首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   56篇
  1064篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   31篇
  2020年   16篇
  2019年   14篇
  2018年   29篇
  2017年   27篇
  2016年   42篇
  2015年   64篇
  2014年   76篇
  2013年   79篇
  2012年   91篇
  2011年   88篇
  2010年   55篇
  2009年   32篇
  2008年   74篇
  2007年   66篇
  2006年   35篇
  2005年   39篇
  2004年   48篇
  2003年   35篇
  2002年   39篇
  2001年   3篇
  2000年   2篇
  1999年   9篇
  1998年   13篇
  1997年   4篇
  1996年   2篇
  1995年   8篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1958年   1篇
排序方式: 共有1064条查询结果,搜索用时 15 毫秒
51.
Although 4-tert-butylphenol (4-t-BP) is a serious aquatic pollutant, its biodegradation in aquatic environments has not been well documented. In this study, 4-t-BP was obviously and repeatedly removed from water from four different environments in the presence of Spirodela polyrrhiza, giant duckweed, but 4-t-BP persisted in the environmental waters in the absence of S. polyrrhiza. Also, 4-t-BP was not removed from autoclaved pond water with sterilized S. polyrrhiza. These results suggest that the 4-t-BP removal from the environmental waters was caused by biodegradation stimulated by the presence of S. polyrrhiza rather than by uptake by the plant. Moreover, Sphingobium fuliginis OMI capable of utilizing 4-t-BP as a sole carbon and energy source was isolated from the S. polyrrhiza rhizosphere. Strain OMI degraded 4-t-BP via a meta-cleavage pathway, and also degraded a broad range of alkylphenols with linear or branched alkyl side chains containing two to nine carbon atoms. Root exudates of S. polyrrhiza stimulated 4-t-BP degradation and cell growth of strain OMI. Thus, the stimulating effects of S. polyrrhiza root exudates on 4-t-BP-degrading bacteria might have contributed to 4-t-BP removal in the environmental waters with S. polyrrhiza. These results demonstrate that the S. polyrrhiza–bacteria association may be applicable to the removal of highly persistent 4-t-BP from wastewaters or polluted aquatic environments.  相似文献   
52.
In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n − 9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1–6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n − 9, 20:1n − 9 and 20:2n − 9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n − 9 → (Fads2) → 18:2n − 9 → (Elovl5) → 20:2n − 9 → (Fads1) → 20:3n − 9 and pathway 2) 18:1n − 9 → (Elovl5) → 20:1n − 9 → (Fads2) → 20:2n − 9 → (Fads1) → 20:3n − 9.  相似文献   
53.
TNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8–mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)–dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis. Here we report the biological event switching to activate necrosis over apoptosis. TAK1 kinase is normally transiently activated upon TNF stimulation. We found that prolonged and hyperactivation of TAK1 induced phosphorylation and activation of RIPK3, leading to necrosis without caspase activation. In addition, we also demonstrated that activation of RIPK1 and RIPK3 promoted TAK1 activation, suggesting a positive feedforward loop of RIPK1, RIPK3, and TAK1. Conversely, ablation of TAK1 caused caspase-dependent apoptosis, in which Ripk3 deletion did not block cell death either in vivo or in vitro. Our results reveal that TAK1 activation drives RIPK3-dependent necrosis and inhibits apoptosis. TAK1 acts as a switch between apoptosis and necrosis.  相似文献   
54.
Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/mt)) that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12(mt/mt) embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16. In contrast, Trip12(mt/mt) ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12(mt/mt) ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex) and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.  相似文献   
55.
Studies on the inhibitory mechanism of acetogenins, the most potent inhibitors of mitochondrial complex I (NADH-ubiquinone oxidoreductase), are useful for elucidating the structural and functional features of the terminal electron transfer step of this enzyme. Previous studies of the structure-activity relationship revealed that except for the alkyl spacer linking the two toxophores (i.e., the hydroxylated THF and the gamma-lactone rings), none of the multiple functional groups of these inhibitors is essential for potent inhibition. To elucidate the function of the alkyl spacer, two sets of systematically selected analogues were synthesized. First, the length of the spacer was varied widely. Second, the local flexibility of the spacer was specifically reduced by introducing multiple bond(s) into different regions of the spacer. The optimal length of the spacer for inhibition was approximately 13 carbon atoms. The decrease in the strength of the inhibitory effect caused by elongating the spacer from 13 carbons was much more drastic than that caused by shortening. Local flexibility in a specific region of the spacer was not important for the inhibition. These observations indicate that the active conformation of the spacer is not an extended form, and is not necessarily restricted to a certain rigid shape. Moreover, an analogue in which a spacer covering 10 carbon atoms was hardened into a rodlike shape still maintained a potent inhibitory effect. Our results strongly suggest that the spacer portion is free from steric congestion arising from the putative binding site probably because there is no cavity-like binding site for the spacer portion. The manner of acetogenin binding to the enzyme may not be explained by a simple "key and keyhole" analogy.  相似文献   
56.
57.
Abstract

Branched-chain amino acids (BCAAs) exhibit many physiological functions. However, the potential link and mechanism between BCAA and skin function are unknown. We examined the effects of deletion of branched-chain α-keto acid dehydrogenase kinase (BDK), a key enzyme in BCAA catabolism, on type I and III tropocollagen syntheses in mice. Leucine and isoleucine levels were significantly lower in the skin of BDK-KO mice compared with wild-type mice. No changes in valine concentrations were observed. The levels of type I and III tropocollagen proteins and mRNAs (COL1A1 and COL3A1) were significantly lower in the skin of BDK-KO mice compared with wild-type mice. The phosphorylation of p70 S6 kinase, which indicates mammalian target of rapamycin (mTOR) activation, was reduced in the skin of BDK-KO mice compared with wild-type mice. These findings suggest that deficiencies of leucine and isoleucine reduce type I and III tropocollagen syntheses in skin by suppressing the action of mTOR.  相似文献   
58.
In the bacterial genetic-code system, the codon AUA is decoded as isoleucine by tRNA(Ile)(2) with the lysidine residue at the wobble position. Lysidine is derived from cytidine, with ATP and L-lysine, by tRNA(Ile) lysidine synthetase (TilS), which is an N-type ATP pyrophosphatase. In this study, we determined the crystal structure of Aquifex aeolicus TilS, complexed with ATP, Mg2+, and L-lysine, at 2.5 A resolution. The presence of the TilS-specific subdomain causes the active site to have two separate gateways, a large hole and a narrow tunnel on the opposite side. ATP is bound inside the hole, and L-lysine is bound at the entrance of the tunnel. The conserved Asp36 in the PP-motif coordinates Mg2+. In these initial binding modes, the ATP, Mg2+, and L-lysine are held far apart from each other, but they seem to be brought together for the reaction upon cytidine binding, with putative structural changes of the complex.  相似文献   
59.
FOXP3/Scurfin, a member of forkhead/winged-helix proteins, is involved in the regulation of T-cell activation, and essential for normal immune homeostasis. The FOXP3/Scurfin gene is located on chromosome Xp11.23, which includes one of the type 1 diabetes susceptible loci. Therefore, we investigated whether the human FOXP3/Scurfin gene might be a new candidate gene for type 1 diabetes. We first screened the human FOXP3/Scurfin gene for microsatellite and single nucleotide polymorphisms. Next, we performed an association study between the FOXP3/Scurfin gene and type 1 diabetes. Then, the evaluation of promoter/enhancer activity of the intron with (GT)(n) polymorphism was performed by dual luciferase reporter assay. We demonstrated two regions contained microsatellite polymorphisms; one was (GT)(n), located on intron zero and the other (TC)(n) on intron 5, which were under linkage-disequilibrium. The (GT)(15) allele showed a significantly higher frequency in patients with type 1 diabetes than in controls (43.1% vs 32.6%, P=0.0027). The genotype frequencies of (GT)(15)/(GT)(15) in female patients and of (GT)(15) in male patients tended to be higher than those in female ( P=0.064) and male ( P=0.061) controls, respectively. A significant difference in the enhancer activity between (GT)(15) and (GT)(16) dinucleotide repeats was detected. In conclusion, the FOXP3/Scurfin gene appears to confer a significant susceptibility to type 1 diabetes in the Japanese population.  相似文献   
60.
To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na+/H+ exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase–Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号