首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2287篇
  免费   214篇
  国内免费   1篇
  2502篇
  2022年   16篇
  2021年   36篇
  2020年   24篇
  2019年   19篇
  2018年   41篇
  2017年   35篇
  2016年   62篇
  2015年   87篇
  2014年   97篇
  2013年   159篇
  2012年   140篇
  2011年   158篇
  2010年   93篇
  2009年   62篇
  2008年   126篇
  2007年   119篇
  2006年   83篇
  2005年   102篇
  2004年   111篇
  2003年   105篇
  2002年   122篇
  2001年   44篇
  2000年   48篇
  1999年   44篇
  1998年   42篇
  1997年   22篇
  1996年   15篇
  1995年   17篇
  1994年   22篇
  1993年   25篇
  1992年   45篇
  1991年   29篇
  1990年   38篇
  1989年   30篇
  1988年   34篇
  1987年   24篇
  1986年   22篇
  1985年   17篇
  1984年   8篇
  1982年   15篇
  1980年   8篇
  1979年   17篇
  1978年   13篇
  1977年   13篇
  1975年   11篇
  1974年   13篇
  1971年   9篇
  1970年   10篇
  1968年   13篇
  1966年   7篇
排序方式: 共有2502条查询结果,搜索用时 15 毫秒
911.
Serine palmitoyltransferase (SPT) belongs to the fold type I family of the pyridoxal 5′-phosphate (PLP)-dependent enzyme and forms 3-ketodihydrosphingosine (KDS) from l-serine and palmitoyl-CoA. Like other α-oxamine synthase subfamily enzymes, SPT is different from most of the fold type I enzymes in that its re face of the PLP-Lys aldimine is occupied by a His residue (His159) instead of an aromatic amino acid residue. His159 was changed into alanine or aromatic amino acid residues to examine its role during catalysis. All mutant SPTs formed the PLP-l-serine aldimine with dissociation constants several 10-fold higher than that of the wild type SPT and catalyzed the abortive transamination of l-serine. These results indicate that His159 is not only the anchoring site for l-serine but regulates the α-deprotonation of l-serine by fixing the conformation of the PLP-l-serine aldimine to prevent unwanted side reactions. Only H159A SPT retained activity and showed a prominent 505-nm absorption band of the quinonoid species during catalysis. Global analysis of the time-resolved spectra suggested the presence of the two quinonoid intermediates, the first formed from the PLP-l-serine aldimine and the second from the PLP-KDS aldimine. Accumulation of these quinonoid intermediates indicated that His159 promotes both the Claisen-type condensation as an acid catalyst and the protonation at Cα of the second quinonoid to form the PLP-KDS aldimine. These results, combined with the previous model building study (Ikushiro, H., Fujii, S., Shiraiwa, Y., and Hayashi, H. (2008) J. Biol. Chem. 283, 7542–7553), lead us to propose a novel mechanism, in which His159 plays multiple roles by exploiting the stereochemistry of Dunathan''s conjecture.Coenzymes act as catalysts in biological systems, and many enzymes require coenzymes as the important catalytic group. In most cases, coenzymes can carry out the catalysis in the absence of the enzyme protein. However, the reaction rate is much lower than the rate in the system containing the enzyme protein. Furthermore, the reaction specificity is reduced in the nonenzymatic system; coenzymes without the enzyme protein tend to undergo side reactions. A remarkable example is the coenzyme pyridoxal 5′-phosphate (PLP).3 PLP is a versatile catalyst catalyzing transamination, decarboxylation, elimination, aldol cleavage, Claisen-type condensation, etc. of amino acids. Therefore, a pyridoxal enzyme is required to have a structure that enables elaborated chemical mechanism by which only a specific reaction proceeds at each catalytic step.Serine palmitoyltransferase (SPT) catalyzes the condensation reaction of l-serine and palmitoyl-CoA to produce 3-ketodihydrosphingosine (KDS) (1). This is the first step in the sphingolipid biosynthesis. SPT belongs to the PLP-dependent α-oxamine synthase subfamily containing 5-aminolevulinate synthase, 8-amino-7-oxononanoate synthase, and 2-amino-3-ketobutyrate CoA ligase (26). All of them have been successfully crystallized, and their three-dimensional structures have been determined (712). These enzymes belong to the fold type I family of the PLP-dependent enzymes according to their folding pattern (5, 6). The commonly known fold type I PLP-dependent enzymes have an aromatic amino acid residue locating at the re face of the PLP-Lys internal aldimine and stacking with the pyridine ring of PLP. On the other hand, all members of the PLP-dependent α-oxamine synthase subfamily known to date have a His residue in this position. Therefore, the His residue is expected to play unique roles in the reaction mechanism of the PLP-dependent α-oxamine synthase subfamily enzymes.Scheme 1 shows the chemical reaction mechanism of SPT (1, 13). At the active site of SPT, PLP forms an aldimine with the ϵ-amino group of Lys265 (internal aldimine, I). The internal aldimine undergoes transaldimination with the first substrate l-serine to yield the PLP-l-serine aldimine (external aldimine, II). After binding of the second substrate palmitoyl-CoA, α-deprotonation occurs to form the first quinonoid intermediate (III). The carbanionic Cα of III attacks palmitoyl-CoA (Claisen-type condensation) to generate a condensation product (IV), which, by decarboxylation, yields the second quinonoid intermediate (V). Protonation at Cα of V gives the external aldimine of PLP-KDS (VI). Finally, release of KDS regenerates the internal aldimine (I). For this reaction mechanism, we proposed by model building studies that His159 of SPT is the anchoring site for both l-serine and palmitoyl-CoA and possibly involved in the catalytic steps (13). However, no experimental analyses have been made to confirm this proposal or to gain further insight into the function of the residue. To determine the catalytic role of His159, especially its role in the reaction specificity of PLP-dependent α-oxamine synthase subfamily enzymes, we constructed mutant Sphingomonas paucimobilis SPTs, in which His159 was replaced by Ala and aromatic amino acid residues, and analyzed the reaction of these mutant enzymes. The results showed that His159 has at least two additional distinct functions: one as a residue that controls the reaction pathway by adjusting the conformation of the PLP-l-serine external aldimine and the other as an acid catalyst that promotes the reactions of the Claisen-type condensation and the following steps.Open in a separate windowSCHEME 1.Reaction mechanism of SPT. The results were taken from Refs. 1 and 13 with modifications.  相似文献   
912.
This study aimed to validate the measurements of body temperature and fecal progesterone concentrations as minimally invasive techniques for assessing ovarian cycle in a single sexually mature female killer whale. Rectal temperature data, fecal and blood samples were collected in the dorsal position using routine husbandry training on a voluntary basis. The correlations between rectal temperature and plasma progesterone concentration and between fecal and plasma progesterone concentrations were investigated. Fecal progesterone metabolites were identified by a combination of high‐performance liquid chromatography and enzyme immunoassay. Plasma progesterone concentrations (range: 0.2–18.6 ng/ml) and rectal temperature (range: 35.3–35.9°C) changed cyclically, and cycle lengths were an average (±SD) of 44.9±4.0 days (nine cycles) and 44.6±5.9 days (nine cycles), respectively. Rectal temperature positively correlated with the plasma progesterone concentrations (r=0.641, P<0.01). There was a visual trend for fecal progesterone profiles to be similar to circulating plasma progesterone profiles. Fecal immunoreactive progestagen analysis resulted in a marked immunoreactive peak of progesterone. The data from the single killer whale indicate that the measurement of rectal temperature is suitable for minimally invasive assessment of the estrous cycle and monitoring the fecal progesterone concentration is useful to assess ovarian luteal activity. Zoo Biol 30:285–295, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
913.
914.
We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney.  相似文献   
915.
The metabolic pathways of poly(3-hydroxybutyrate) (PHB) and polyphosphate in the microorganism Alcaligenes eutrophus H16 were studied by 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy and by conventional analytical techniques. A. eutrophus cells accumulated two storage polymers of PHB and polyphosphate in the presence of carbon and phosphate sources under aerobic conditions after exhaustion of nitrogen sources. The solid-state cross-polarization/magic-angle spinning 13C NMR spectroscopy was used to study the biosynthetic pathways of PHB and other cellular biomass components from 13C-labeled acetate. The solid-state 13C NMR analysis of lyophilized intact cells grown on [1-13C]acetate indicated that the carbonyl carbon of acetate was selectively incorporated both into the carbonyl and methine carbons of PHB and into the carbonyl carbons of proteins. The 31P NMR analysis of A. eutrophus cells in suspension showed that the synthesis of intracellular polyphosphate was closely related to the synthesis of PHB. The roles of PHB and polyphosphate in the cells were studied under conditions of carbon, phosphorus, and nitrogen source starvation. Under both aerobic and anaerobic conditions PHB was degraded, whereas little polyphosphate was degraded. The rate of PHB degradation under anaerobic conditions was faster than that under aerobic conditions. Under anaerobic conditions, acetate and 3-hydroxybutyrate were produced as the major extracellular metabolites. The implications of this observation are discussed in connection with the regulation of PHB and polyphosphate metabolism in A. eutrophus.  相似文献   
916.
Poly[(R)-3-hydroxybutyric acid] and its copolymers were prepared by biosynthetic and chemosynthetic methods. The films of polyesters were prepared by both the solution-cast and melt-crystallized techniques. The enzymatic degradation of polyester films was carried out at 37 degrees C in an aqueous solution (pH 7.4) of PHB depolymerase from Alcaligenes faecalis. The rate of enzymatic erosion on the solution-cast films increased markedly with an increase in the fraction of second monomer units up to 10-20 mol% to reach a maximum value followed by a decrease in the erosion rate. Analysis of the water-soluble products liberated during the enzymatic degradation of polyester films showed the formation of a mixture of monomers and oligomers of (R)-3HB and hydroxyalkanoic acids units, suggesting that the active site of PHB depolymerase recognizes at least three monomeric units as substrate for the hydrolysis of ester bonds in a polymer chain. The rate of enzymatic erosion of melt-crystallized polyester films decreased with an increase in crystallinity. PHB depolymerase predominantly hydrolyzed the polymer chains in the amorphous phase and subsequently eroded crystalline phase. In addition, the enzymatic degradation of crystalline phase by PHB depolymerase progressed from the edges of crystalline lamellar stacks. The enzymatic erosion rate of crystalline phase in polyester films decreased with an increase in the lamellar thickness.  相似文献   
917.
The gene coding for Bacillus subtilis RNA polymerase major sigma 43, rpoD, was cloned together with its neighboring genes in a 7 kb EcoRI fragment. The complete nucleotide sequence of a 5 kb fragment including the entire rpoD gene revealed the presence of two other genes preceding rpoD in the order P23-dnaE-rpoD. The dnaE codes for DNA primase while the function of P23 remains unknown. The three genes reside in an operon that is similar in organization to the E. coli RNA polymerase major sigma 70 operon, which is composed of genes encoding small ribosome protein S21 (rpsU), DNA primase (dnaG), and RNA polymerase sigma 70 (rpoD). There is a relatively high degree of base and amino acid homology between the DNA primase and sigma genes. The most significant differences between the two operons are observed in the molecular size of the first genes (P23 and rpsU), the complete lack of amino acid homology between P23 and S21, the molecular weights of the two rpoD genes, the size of the intercistronic region between the first two genes, and the regulatory elements of the operon.  相似文献   
918.
M Wachi  M Doi  Y Okada    M Matsuhashi 《Journal of bacteriology》1989,171(12):6511-6516
New shape-determining genes in the mre cluster at 71 min on the Escherichia coli chromosome map, named mreC and mreD, were identified by complementation experiments using delta mre-678 mutant cells, which have a 5-kilobase-pair deletion encompassing the mre region, and by DNA sequencing. The delta mre-678 mutant cells required three genes, the previously reported mreB gene and the two new genes, to restore the normal rod shape of the cells and normal sensitivity of growth to mecillinam. The mreC gene is preceded by the mreB gene and by a 65-base-pair spacing sequence containing a palindrome sequence and a possible Shine-Dalgarno sequence. The deduced amino acid sequence of the MreC protein consists of 367 amino acid residues with a molecular weight of 39,530. The initiation codon of the mreD gene overlaps the termination codon of the mreC gene by one nucleotide residue. The deduced amino acid sequence of the MreD protein consists of 162 amino acid residues with a molecular weight of 18,755. In vitro, the coding frames of mreC and mreD produced proteins with Mrs of 40,000 and 15,000, respectively, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   
919.
920.
Aldosterone (Aldo) is recognized as an important risk factor for cardiovascular diseases. IL-18 induces myocardial hypertrophy, loss of contractility of cardiomyocytes, and apoptosis leading myocardial dysfunction. However, so far, there have been few reports concerning the interaction between Aldo and IL-18. The present study examined the effects and mechanisms of Aldo on IL-18 expression and the roles of peroxisome proliferator-activated receptor (PPAR) agonists in rat cardiomyocytes. We used cultured rat neonatal cardiomyocytes stimulated with Aldo to measure IL-18 mRNA and protein expression, Rho-kinase, and NF-kappaB activity. We also investigated the effects of PPAR agonists on these actions. Aldo, endothelin-1 (ET-1), and angiotensin II (ANG II) increased IL-18 mRNA and protein expression. Mineralocorticoid receptor antagonists, endothelin A receptor antagonist, and ANG II receptor antagonist inhibited Aldo-induced IL-18 expression. Aldo induced ET-1 and ANG II production in cultured media. Moreover, Rho/Rho-kinase inhibitor and statin inhibited Aldo-induced IL-18 expression. On the other hand, Aldo upregulated the activities of Rho-kinase and NF-kappaB. PPAR agonists attenuated the Aldo-induced IL-18 expression and NF-kappaB activity but not the Rho-kinase activity. Our findings indicate that Aldo induces IL-18 expression through a mechanism that involves, at a minimum, ET-1 and ANG II acting via the Rho/Rho-kinase and PPAR/NF-kappaB pathway. The induction of IL-18 in cardiomyocytes by Aldo, ET-1, and ANG II might, therefore, cause a deterioration of the cardiac function in an autocrine and paracrine fashion. The inhibition of the IL-18 expression by PPAR agonists might be one of the mechanisms whereby the beneficial cardiovascular effects are exerted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号