首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   24篇
  国内免费   1篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   15篇
  2014年   8篇
  2013年   17篇
  2012年   19篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   11篇
  2007年   15篇
  2006年   17篇
  2005年   12篇
  2004年   16篇
  2003年   9篇
  2002年   14篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1985年   1篇
  1983年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有251条查询结果,搜索用时 218 毫秒
221.
Algorithms and software for support of gene identification experiments   总被引:1,自引:0,他引:1  
MOTIVATION: Gene annotation is the final goal of gene prediction algorithms. However, these algorithms frequently make mistakes and therefore the use of gene predictions for sequence annotation is hardly possible. As a result, biologists are forced to conduct time-consuming gene identification experiments by designing appropriate PCR primers to test cDNA libraries or applying RT-PCR, exon trapping/amplification, or other techniques. This process frequently amounts to 'guessing' PCR primers on top of unreliable gene predictions and frequently leads to wasting of experimental efforts. RESULTS: The present paper proposes a simple and reliable algorithm for experimental gene identification which bypasses the unreliable gene prediction step. Studies of the performance of the algorithm on a sample of human genes indicate that an experimental protocol based on the algorithm's predictions achieves an accurate gene identification with relatively few PCR primers. Predictions of PCR primers may be used for exon amplification in preliminary mutation analysis during an attempt to identify a gene responsible for a disease. We propose a simple approach to find a short region from a genomic sequence that with high probability overlaps with some exon of the gene. The algorithm is enhanced to find one or more segments that are probably contained in the translated region of the gene and can be used as PCR primers to select appropriate clones in cDNA libraries by selective amplification. The algorithm is further extended to locate a set of PCR primers that uniformly cover all translated regions and can be used for RT-PCR and further sequencing of (unknown) mRNA.   相似文献   
222.
Molecular study of mitochondrial and nuclear genes and cytogenetic analysis were performed to examine possible patterns of speciation in the diverse Lophuromys flavopunctatus species complex of Ethiopia. Phylogenetic analysis of mtDNA data resulted in an unresolved bush of ten deeply diverged haplotype groups corresponding to potential species either well supported by various types of character or 'cryptic'. The cytogenetic analysis showed representatives of five of these mtDNA lineages to share an identical karyotype (2 n  = 70, NFa = 84), that has not been found previously in Ethiopia. One of them, L.  cf.  sikapusi , being a member of the L. flavopunctatus species complex, demonstrates remarkable morphological similarity to representatives of another species complex, L. sikapusi s.l ., which might be considered as a result of convergent evolution in analogous environments. Analysis of RAPD data suggests that at least two mtDNA types might have been subject to interspecific transfer due to hybridization. In the case of two sympatric haplotypes of L. brunneus we may assume that the contemporary pattern of variation between them can be explained by relatively recent hybridization with another distinct species, L. flavopunctatus . The formation of two groups belonging to distinct mitochondrial lineages within northern populations could be associated with more complex processes including ancient hybridization.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 301–316.  相似文献   
223.
Polymer membranes composed ofN,N-dimethylaminoethyl methacrylate (DMAEMA) and acrylamide (AAm) (or ethyl acrylamide (EAAm)) were prepared to demonstrate the thermocontrol of solute permeation. Poly DMEMA has a lower critical solution temperature (LCST) at around 50°C in water. With the copolymerization of DMAEMA with AAm (or EAAm), a shift in the LCST to a lower temperature was observed, probably due to the formation of hydrogen bonds between the amide andN,N-dimethylamino groups. However, the temperature-induced phase transition of poly (DMAEMA-co-EAAm) did not show a similar trend to that of poly (DMAEMA-co-AAm) in the gel state. The hydrogen bonds in poly (DMAEMA-co-EAAm) were significantly disrupted with the formation of a gel network, which led to a difference in the swelling behavior of polymer gels in response to temperature. To apply these polymers to temperature-sensitive solute permeation, polymer membranes were prepared. The permeation pattern of hydrocortisone, used as the model solute, was explained based on the temperature-sensitive swelling behavior of the polymer membranes.  相似文献   
224.
CXC and CC chemokines are involved in numerous biological processes, and their function in situ may be significantly influenced by heterodimer formation, as was recently reported, for example, for CXC chemokines CXCL4/PF4 and CXCL8/IL8 that interact to form heterodimers that modulate chemotactic and cell proliferation activities. Here we used molecular dynamics simulations to determine relative association free energies (overall average and per residue) for homo- and heterodimer pairs of CXC (CXCL4/PF4, CXCL8/IL8, CXCL1/Gro-alpha, and CXCL7/NAP-2) and CC (CCL5/RANTES, CCL2/MCP-1, and CCL8/MCP-2) chemokines. Even though structural homology among monomer folds of all CXC and CC chemokines permits heterodimer assembly, our calculated association free energies depend upon the particular pair of chemokines in terms of the net electrostatic and nonelectrostatic forces involved, as well as (for CC/CXC mixed chemokines) the selection of dimer type (CC or CXC). These relative free energies indicate that association of some pairs of chemokines is more favorable than others. Our approach is validated by correlation of calculated and experimentally determined free energies. Results are discussed in terms of CXC and CC chemokine function and have significant biological implications.  相似文献   
225.
The Cambridge Healthtech Institute's Fifth Annual Proteomics – From Proteins to Drugs of Beyond Genome 2001 series was held in San Francisco, California, USA, 21–22 June 2001.  相似文献   
226.
The Snf2 family represents a functionally diverse class of ATPase sharing the ability to modify DNA structure. Here, we use a magnetic trap and an atomic force microscope to monitor the activity of a member of this class: the RSC complex. This enzyme caused transient shortenings in DNA length involving translocation of typically 400 bp within 2 s, resulting in the formation of a loop whose size depended on both the force applied to the DNA and the ATP concentration. The majority of loops then decrease in size within a time similar to that with which they are formed, suggesting that the motor has the ability to reverse its direction. Loop formation was also associated with the generation of negative DNA supercoils. These observations support the idea that the ATPase motors of the Snf2 family of proteins act as DNA translocases specialized to generate transient distortions in DNA structure.  相似文献   
227.
We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-α, IL-6, gamma interferon [IFN-γ], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8+ T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4+ T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4+ and CD8+ T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4+ but not CD8+ T cells in primary SARS-CoV infection in this model.The global outbreak of severe acute respiratory syndrome (SARS) in 2003 that infected more than 8,000 people in 29 countries across five continents, with 774 deaths reported by the World Health Organization (54), was caused by a highly contagious coronavirus designated SARS-CoV (33). The elderly were more likely to die from SARS-CoV infection than younger people (7), with a case-fatality rate of 50% in people older than 65 years (14, 53). Disease pathogenesis in SARS is complex, with multiple factors leading to severe pulmonary injury and dissemination of the virus to other organs. High viral load; systemic infection; a cytokine storm with high levels of CXCL10/IP-10, CCL3/MIP-1α, and CCL2/MCP-1; massive lung infiltration by monocytes and macrophages; and rapid depletion of T cells are hallmarks of SARS (5, 13, 15, 21, 28, 35). The role of neutralizing antibodies (Abs) in protection from SARS-CoV infection has been well documented. Virus-specific neutralizing Abs reduce viral load, protect against weight loss, and reduce histopathology in animal models (42, 47, 48). Although the role of type I interferons (IFNs) in the natural history of SARS is controversial (5, 9, 59), the innate defense system appears to be critical for controlling SARS-CoV replication in mice (23, 41). Mice lacking normal innate signaling due to STAT1 or MyD88 deficiency are highly susceptible to SARS-CoV infection. Virus-specific T-cell responses are present in convalescent patients with SARS (27, 55). However, little is known about the role of T cells in the acute phase of SARS.Several mouse models have been developed for the in vivo study of SARS pathogenesis. However, no single model accurately reproduces all aspects of the human disease. SARS-CoV replicates in the upper and lower respiratory tracts of 4- to 8-week-old mice and is cleared rapidly; infection is associated with transient mild pneumonitis, and cytokines are not detectable in the lungs (20, 42, 49). A SARS-CoV isolate that was adapted by serial passage in mice (MA-15) replicates to a higher titer and for a longer duration in the lungs than the unadapted (Urbani) virus and is associated with viremia and mortality in young mice (36), but the histologic changes in the lungs are caused by high titers of virus and cell death without significant infiltrates of inflammatory cells. The heightened susceptibility of elderly patients to SARS led us to develop a pneumonia model in 12- to 14-month-old (mo) BALB/c mice using the Urbani virus. In this model, pulmonary replication of virus was associated with signs of clinical illness and histopathological evidence of disease characterized by bronchiolitis, interstitial pneumonitis, diffuse alveolar damage, and fibrotic scarring (3), thus resembling SARS in the elderly. We evaluated the host response to SARS-CoV infection by examining the gene expression profile in the senescent mouse model and found a robust response to virus infection, with an increased expression of several immune response and cell-to-cell signaling genes, including those for tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), CCL2, CCL3, CXCL10, and IFN-γ (1).In this study, we characterize the cellular immune response to SARS-CoV infection in 12- to 14-mo BALB/c mice in terms of the protein and gene expression of inflammatory mediators, migration of inflammatory cells, and virus-specific T-cell responses in the lungs during the course of disease. We evaluated the role of T cells in disease pathogenesis and viral clearance by depleting T-cell subsets at the time of infection and found an important role for CD4+ T cells (but not CD8+ T cells) in primary infection with SARS-CoV in this model.  相似文献   
228.
Bordetella bronchiseptica utilizes a type III secretion system (TTSS) for induction of non-apoptotic cytotoxicity in host cells and modulation of host immunity. The identity of Bordetella TTSS effectors, however, has remained elusive. Here we report a genome-wide screen for TTSS effectors based on shared biophysical and functional characteristics of class I chaperones and their frequent colocalization with TTSS effectors. When applied to B. bronchiseptica, the screen identified the first TTSS chaperone-effector locus, btcA-bteA, and we experimentally confirmed its function. Expression of bteA is co-ordinated with expression of TTSS apparatus genes, BteA is secreted through the TTSS of B. bronchiseptica, it is required for cytotoxicity towards mammalian cells, and it is highly conserved in the human-adapted subspecies B. pertussis and B. parapertussis. Transfection of bteA into epithlieal cells results in rapid cell death, indicating that BteA alone is sufficient to induce potent cytotoxicity. Finally, an in vitro interaction between BteA and BtcA was demonstrated. The search for TTSS chaperones and effectors was then expanded to other bacterial genomes, including mammalian and insect pathogens, where we identified a large number of novel candidate chaperones and effectors. Although the majority of putative effectors are proteins of unknown function, several have similarities to eukaryotic protein domains or previously identified effectors from other species.  相似文献   
229.
Wang GJ  Lin LC  Chen CF  Cheng JS  Lo YK  Chou KJ  Lee KC  Liu CP  Wu YY  Su W  Chen WC  Jan CR 《Life sciences》2002,71(9):1081-1090
The effects of timosaponin A-III (TA-III), from Rhizoma Anemarrhenae, on Ca(2+) mobilization in vascular endothelial cells and smooth muscle cells and on vascular tension have been explored. TA-III increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) in endothelials cells at a concentration larger than 5 microM with an EC(50) of 15 microM, and increased [Ca(2+)](i) in smooth muscle cells at a concentration larger than 1 microM with an EC(50) of 8 microM. Within 5 min, the [Ca(2+)](i) signal was composed of a gradual rise, and the speed of rising depended on the concentration of TA-III. The [Ca(2+)](i) signal was abolished by removing extracellular Ca(2+) and was recovered after reintroduction of Ca(2+). The TA-III-induced [Ca(2+)](i) increases in smooth muscle cells were partly inhibited by 10 microM nifedipine or 50 microM La(3+), but was insensitive to 10 microM verapamil and diltiazem. TA-III (10-100 microM) inhibited 0.3 microM phenylephrine-induced vascular contraction, which was abolished by pretreatment with 100 microM N(omega)-nitro-L-arginine (L-NNA) or by denuding the aorta. TA-III also increased [Ca(2+)](i) in renal tubular cells with an EC(50) of 8 microM. Collectively, the results show for the first time that TA-III causes [Ca(2+)](i) increases in the vascular system. TA-III acted by causing Ca(2+) influx without releasing intracellular Ca(2+). TA-III induced relaxation of phenylephrine-induced vascular contraction via inducing release of nitric oxide from endothelial cells.  相似文献   
230.
Voltage-gated K(+) (Kv) 2.1 is the dominant Kv channel that controls membrane repolarization in rat islet beta-cells and downstream insulin exocytosis. We recently showed that exocytotic SNARE protein SNAP-25 directly binds and modulates rat islet beta-cell Kv 2.1 channel protein at the cytoplasmic N terminus. We now show that SNARE protein syntaxin 1A (Syn-1A) binds and modulates rat islet beta-cell Kv2.1 at its cytoplasmic C terminus (Kv2.1C). In HEK293 cells overexpressing Kv2.1, we observed identical effects of channel inhibition by dialyzed GST-Syn-1A, which could be blocked by Kv2.1C domain proteins (C1: amino acids 412-633, C2: amino acids 634-853), but not the Kv2.1 cytoplasmic N terminus (amino acids 1-182). This was confirmed by direct binding of GST-Syn-1A to the Kv2.1C1 and C2 domains proteins. These findings are in contrast to our recent report showing that Syn-1A binds and modulates the cytoplasmic N terminus of neuronal Kv1.1 and not by its C terminus. Co-expression of Syn-1A in Kv2.1-expressing HEK293 cells inhibited Kv2.1 surfacing, which caused a reduction of Kv2.1 current density. In addition, Syn-1A caused a slowing of Kv2.1 current activation and reduction in the slope factor of steady-state inactivation, but had no affect on inactivation kinetics or voltage dependence of activation. Taken together, SNAP-25 and Syn-1A mediate secretion not only through its participation in the exocytotic SNARE complex, but also by regulating membrane potential and calcium entry through their interaction with Kv and Ca(2+) channels. In contrast to Ca(2+) channels, where these SNARE proteins act on a common synprint site, the SNARE proteins act not only on distinct sites within a Kv channel, but also on distinct sites between different Kv channel families.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号