首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   20篇
  国内免费   1篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   14篇
  2014年   8篇
  2013年   16篇
  2012年   19篇
  2011年   18篇
  2010年   17篇
  2009年   15篇
  2008年   9篇
  2007年   12篇
  2006年   16篇
  2005年   11篇
  2004年   14篇
  2003年   8篇
  2002年   13篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1985年   1篇
  1983年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
The biopharmaceutical industry is increasing its use of the WAVE Bioreactor for culturing cells. Although this disposable bioreactor can be equipped to provide real-time pH and dissolved oxygen (DO) monitoring and control, our goal was to develop a process for culturing CHO cells in this system without relying on pH and DO feedback controls. After identifying challenges in culturing cells without controlling for pH and DO in the WAVE Bioreactor, we characterized O(2) and CO(2) transfer in the system. From these cell-free studies, we identified rock rate and rock angle as key parameters affecting O(2) transfer. We also identified the concentration of CO(2) in the incoming gas and the rate of gas flow into the headspace as key parameters affecting CO(2) transfer--and therefore pH--in the disposable culture chamber. Using a full-factorial design to evaluate the rock rate, rock angle, and gas flow rate defined for this WAVE Bioreactor process, we found comparable cell growth and pH profiles in the ranges tested for these three parameters in two CHO cell lines. This process supported cell growth, and maintained pH and DO within our desired range--pH 6.8-7.2 and DO exceeding 20% of air saturation--for six CHO cell lines, and it also demonstrated comparable cell growth and viability with the stirred-tank bioreactor process with online pH and DO control. By eliminating the use of pH and DO probes, this process provides a simple and more cost-effective method for culturing cells in the WAVE Bioreactor.  相似文献   
75.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   
76.
We present a novel approach to the enhancement of surface plasmon-coupled emission (SPCE) using surface plasmon excitation in a bimetal (Ag/Au) layer and we validate the enhancement by presenting the results of a model human IgG immunoassay. Theoretical calculations using Fresnel's equations have been carried out to determine the optimum bimetallic composition and the resulting electric field enhancement. Signal enhancement of SPCE was confirmed using a range of bimetallic layers which were deposited on the surface of a high collection efficiency polymer array biochip and subsequently immobilized with Alexa Fluor 647 labeled anti-human IgG. The bimetallic film of Ag/Au (36/10nm) was determined as an optimum substrate for maximum SPCE signal which was a compromise between the long-term stability of the metal layer and the optimized evanescent field enhancement. An enhanced dose-dependent response was also demonstrated which was ~3 times greater than that detected with a pure gold layer. A human IgG immunoassay showed a dose-dependent response yielding a limit of detection of 1pg/ml by the 3σ rule. The improved performance of the bimetal layer compared to that of an assay carried out on a pure gold layer is attributed to the enhanced evanescent field intensity of surface plasmons in the bimetal combination which excites more fluorescence hence producing an enhanced SPCE signal. This result demonstrates the potential of the SPCE-based array biochips as a sensitive and high-throughput analysis platform for biomolecular interactions.  相似文献   
77.
78.
The scaffolding adaptor protein p62/SQSTM1 (p62) has been shown to be an autophagy receptor that acts as a link between the ubiquitination and autophagy machineries. However, the roles of autophagy and p62 in human keratinocytes are not well understood. In this study, we show that keratinocyte autophagy negatively regulates p62 expression, which is essential for the prevention of excessive inflammation and the induction of cathelicidin in human keratinocytes. Stimulation of TLR2/6 or TLR4 in primary human keratinocytes robustly activated autophagy pathways and up-regulated p62 expression through induction of NADPH oxidases 2 and 4 and the generation of reactive oxygen species. MyD88 and TNFR-associated factor 6, key signaling molecules that mediate TLR activation, played an essential role in the induction of autophagy and p62 expression. Additionally, blockade of autophagy significantly increased the generation of inflammatory cytokines and expression of p62 in primary human keratinocytes. Notably, silencing hp62 through RNA interference resulted in a significant decrease in NF-κB activation, inflammatory cytokine production, cathelicidin expression, and cell proliferation (as well as cyclin D1 expression) in keratinocytes. Epidermal expression of p62 was further found to be significantly higher in psoriatic skin than in skin affected by atopic dermatitis or from healthy controls. Collectively, our data provide new insights into the roles of autophagy and p62 in controlling cutaneous inflammation.  相似文献   
79.
SNARE proteins, syntaxin-1A (Syn-1A) and SNAP-25, inhibit delayed rectifier K(+) channels, K(v)1.1 and K(v)2.1, in secretory cells. We showed previously that the mutant open conformation of Syn-1A (Syn-1A L165A/E166A) inhibits K(v)2.1 channels more optimally than wild-type Syn-1A. In this report we examined whether Syn-1A in its wild-type and open conformations would exhibit similar differential actions on the gating of K(v)1.2, a major delayed rectifier K(+) channel in nonsecretory smooth muscle cells and some neuronal tissues. In coexpression and acute dialysis studies, wild-type Syn-1A inhibited K(v)1.2 current magnitude. Of interest, wild-type Syn-1A caused a right shift in the activation curves of K(v)1.2 without affecting its steady-state availability, an inhibition profile opposite to its effects on K(v)2.1 (steady-state availability reduction without changes in voltage dependence of activation). Also, although both wild-type and open-form Syn-1A bound equally well to K(v)1.2 in an expression system, open-form Syn-1A failed to reduce K(v)1.2 current magnitude or affect its gating. This is in contrast to the reported more potent effect of open-form Syn-1A on K(v)2.1 channels in secretory cells. This finding together with the absence of Munc18 and/or 13-1 in smooth muscles suggested that a change to an open conformation Syn-1A, normally facilitated by Munc18/13-1, is not required in nonsecretory smooth muscle cells. Taken together with previous reports, our results demonstrate the multiplicity of gating inhibition of different K(v) channels by Syn-1A and is compatible with versatility of Syn-1A modulation of repolarization in various secretory and nonsecretory (smooth muscle) cell types.  相似文献   
80.
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号