首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   19篇
  国内免费   1篇
  235篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   14篇
  2014年   8篇
  2013年   16篇
  2012年   19篇
  2011年   18篇
  2010年   17篇
  2009年   15篇
  2008年   9篇
  2007年   12篇
  2006年   16篇
  2005年   11篇
  2004年   14篇
  2003年   8篇
  2002年   13篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1985年   1篇
  1983年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
101.
Zebrafish is a popular animal model for research on eye development because of its rapid ex utero development and good fecundity. By 3 days post fertilization (dpf), the larvae will show the first visual response. Many genes have been identified to control a proper eye development, but we are far from a complete understanding of the underlying genetic architecture. Whole genome gene expression profiling is a useful tool to elucidate genetic regulatory network for eye development. However, the small size of the embryonic eye in zebrafish makes it challenging to obtain intact and pure eye tissues for expression analysis. For example, the anterior-posterior length of the eye between day 2 and 3 is only approximately 200-300 μm, while the diameter of the lens is less 100 μm. Also, the retinal pigment epithelium (RPE) underlying the retina is just a single-layer epithelium. While gene expression profiles can be obtained from the whole embryo, they do not accurately represent the expression of these tissues. Therefore pure tissue must be obtained for a successful gene expression profiling of eye development. To address this issue, we have developed an approach to microdissect intact retina and retina with RPE attached from 1-3 dpf, which cover major stages of eye morphogenesis. All procedures can be done with fine forceps and general laboratory supplies under standard stereomicroscopes. For retinal dissection, the single-layer RPE is removed and peeled off by brushing action and the preferential adherence of the RPE remnants to the surface of the culture plate for dissection. For RPE-attached retinal dissection, the adherence of RPE to the dissection plate is removed before the dissection so that the RPE can be completely preserved with the retina. A careful lifting action of this tissue can efficiently separate the presumptive choroid and sclera. The lens can be removed in both cases by a chemically etched tungsten needle. In short, our approach can obtain intact eye tissues and has been successfully utilized to study tissue-specific expression profiles of zebrafish retina1, 2 and retinal pigment epithelium3.Download video file.(105M, mp4)  相似文献   
102.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   
103.
104.
Recently, we reported that homozygous deletion of alternative exon 33 of CaV1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased CaV1.2Δ33 ICaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33+/? cardiomyocytes showed similar CaV1.2 channel properties as wild-type cardiomyocyte, even though CaV1.2Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of CaV1.2 exon 33. (149 words)  相似文献   
105.
In human monocytes, Toll‐like receptor (TLR) 2/1 activation leads to vitamin D3‐dependent antimycobacterial activities, but the molecular mechanisms by which TLR2/1 stimulation induces antimicrobial activities against mycobacteria remain unclear. Here we show that TLR2/1/CD14 stimulation by mycobacterial lipoprotein LpqH can robustly activate antibacterial autophagy through vitamin D receptor signalling activation and cathelicidin induction. We found that CCAAT/enhancer‐binding protein (C/EBP)‐β‐dependent induction of 25‐hydroxycholecalciferol‐1α‐hydroxylase (Cyp27b1) hydroxylase was critical for LpqH‐induced cathelicidin expression and autophagy. In addition, increases in intracellular calcium following AMP‐activated protein kinase (AMPK) activation played a crucial role in LpqH‐induced autophagy. Moreover, AMPK‐dependent p38 mitogen‐activated protein kinase (MAPK) activation was required for LpqH‐induced Cyp27b1 expression and autophagy activation. Collectively, these data suggest that TLR2/1/CD14‐Ca2+‐AMPK‐p38 MAPK pathways contribute to C/EBP‐β‐dependent expression of Cyp27b1 and cathelicidin, which played an essential role in LpqH‐induced autophagy. Furthermore, these results establish a previously uncharacterized signalling pathway of antimycobacterial host defence through a functional link of TLR2/1/CD14‐dependent sensing to the induction of autophagy.  相似文献   
106.

Background  

The species is a fundamental unit of biological pattern and process, but its delimitation has proven a ready source of argument and disagreement. Here, we discuss four key steps that utilize statistical thresholds to describe the morphological variability within a sample and hence assess whether there is evidence for one or multiple species. Once the initial set of biologically relevant traits on comparable individuals has been identified, there is no need for the investigator to hypothesise how specimens might be divided among groups, nor the traits on which groups might be separated.  相似文献   
107.
108.
Oh KS  Han SK  Lee HS  Koo HM  Kim RS  Lee KE  Han SS  Cho SH  Yuk SH 《Biomacromolecules》2006,7(8):2362-2367
Core/shell nanoparticles with lipid core, were prepared and characterized as a sustained delivery system for protein. The lipid core is composed of protein-loaded lecithin and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127). Based on the preparation method in the previous report by us, the freeze-drying of protein-loaded lecithin was performed in the F-127 aqueous solution containing trehalose used as a cryoprotectant to form stabilized core/shell nanoparticles. Cryo-TEM (transmittance electron microscopy) and a particle size analyzer were used to observe the formation of stabilized core/shell nanoparticles. For the application of core/shell nanoparticles as a protein drug carrier, lysozyme and vascular endothelial growth factor (VEGF) were loaded into the core/shell nanoparticles by electrostatic interaction, and the drug release pattern was observed by manipulating the polymeric shell.  相似文献   
109.
Matrix metalloproteinase‐13 (MMP‐13) is involved in the degradation of extracellular matrix in many kinds of tissues. Here we found that hypoxia increased MMP‐13 protein and mRNA levels in primary rat astrocyte cultures. Hypoxia stimulation also increased the secretion of MMP‐13 from astrocytes, as shown by zymographic analysis. In addition, exposure to hypoxia up‐regulated the expression of c‐Fos and c‐Jun time‐dependently. Hypoxia‐induced MMP‐13 overexpression was antagonized by transfection with antisense oligodeoxynucleotides (AS‐ODN) of c‐Fos or c‐Jun. Furthermore, hypoxic‐conditioned medium (Hx‐CM) collected from astrocytes exposed to hypoxia increased paracellular permeability of adult rat brain endothelial cells (ARBECs). Administration of MMP‐13 neutralizing antibody antagonized Hx‐CM‐induced paracellular permeability of ARBECs. Furthermore, pre‐transfection of astrocytes with AS‐ODN of c‐Fos, c‐Jun or MMP‐13‐shRNA significantly decreased hyperpermeability of ARBECs induced by Hx‐CM. The arrangement of tight junction protein (TJP) zonular occludens‐1 (ZO‐1) of ARBECs disorganized in response to Hx‐CM. Administration of Hx‐CM to ARBECs also resulted in the production of proteolytic fragments of ZO‐1, which was antagonized by transfection of MMP‐13‐shRNA in primary astrocytes. Administration of MMP‐13 recombinant protein to ARBECs led to the disorganization and fragmentation of ZO‐1 protein and also increased paracellular permeability. These results suggest that hypoxia‐induced MMP‐13 expression in astrocytes is regulated by c‐Fos and c‐Jun. MMP‐13 is an important factor leading to the disorganization of ZO‐1 and hyperpermeablility of blood–brain barrier in response to hypoxia. J. Cell. Physiol. 220: 163–173, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
110.
Cardiac troponin I (cTnI) functions as the molecular switch of the thin filament. Studies have shown that a histidine button engineered into cTnI (cTnI A164H) specifically enhances inotropic function in the context of numerous pathophysiological challenges. To gain mechanistic insight into the basis of this finding, we analyzed histidine ionization states in vitro by studying the myofilament biophysics of amino acid substitutions that act as constitutive chemical mimetics of altered histidine ionization. We also assessed the role of histidine-modified cTnI in silico by means of molecular dynamics simulations. A functional in vitro analysis of myocytes at baseline (pH 7.4) indicated similar cellular contractile function and myofilament calcium sensitivity between myocytes expressing wild-type (WT) cTnI and cTnI A164H, whereas the A164R variant showed increased myofilament calcium sensitivity. Under acidic conditions, compared with WT myocytes, the myocytes expressing cTnI A164H maintained a contractile performance similar to that observed for the constitutively protonated cTnI A164R variant. Molecular dynamics simulations showed similar intermolecular atomic contacts between the WT and the deprotonated cTnI A164H variant. In contrast, simulations of protonated cTnI A164H showed various potential structural configurations, one of which included a salt bridge between His-164 of cTnI and Glu-19 of cTnC. This salt bridge was recapitulated in simulations of the cTnI A164R variant. These data suggest that differential histidine ionization may be necessary for cTnI A164H to act as a molecular sensor capable of modulating sarcomere performance in response to changes in the cytosolic milieu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号