首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   18篇
  290篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   16篇
  2014年   9篇
  2013年   18篇
  2012年   27篇
  2011年   21篇
  2010年   21篇
  2009年   15篇
  2008年   12篇
  2007年   18篇
  2006年   17篇
  2005年   10篇
  2004年   15篇
  2003年   10篇
  2002年   13篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1983年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有290条查询结果,搜索用时 0 毫秒
91.
92.
The scaffolding adaptor protein p62/SQSTM1 (p62) has been shown to be an autophagy receptor that acts as a link between the ubiquitination and autophagy machineries. However, the roles of autophagy and p62 in human keratinocytes are not well understood. In this study, we show that keratinocyte autophagy negatively regulates p62 expression, which is essential for the prevention of excessive inflammation and the induction of cathelicidin in human keratinocytes. Stimulation of TLR2/6 or TLR4 in primary human keratinocytes robustly activated autophagy pathways and up-regulated p62 expression through induction of NADPH oxidases 2 and 4 and the generation of reactive oxygen species. MyD88 and TNFR-associated factor 6, key signaling molecules that mediate TLR activation, played an essential role in the induction of autophagy and p62 expression. Additionally, blockade of autophagy significantly increased the generation of inflammatory cytokines and expression of p62 in primary human keratinocytes. Notably, silencing hp62 through RNA interference resulted in a significant decrease in NF-κB activation, inflammatory cytokine production, cathelicidin expression, and cell proliferation (as well as cyclin D1 expression) in keratinocytes. Epidermal expression of p62 was further found to be significantly higher in psoriatic skin than in skin affected by atopic dermatitis or from healthy controls. Collectively, our data provide new insights into the roles of autophagy and p62 in controlling cutaneous inflammation.  相似文献   
93.
BackgroundSafety monitoring of coronavirus disease 2019 (COVID-19) vaccines is crucial during mass vaccination rollout to inform the choice of vaccines and reduce vaccine hesitancy. Considering the scant evidence directly comparing the safety profiles of mRNA and inactivated SARS-CoV-2 vaccines, this territory-wide cohort study aims to compare the incidence of various adverse events of special interest (AESIs) and all-cause mortality between CoronaVac (inactivated vaccine) and BNT162b2 (mRNA-based vaccine). Our results can help vaccine recipients make an informed choice.Methods and findingsA retrospective, population-based cohort of individuals who had received at least 1 dose of BNT162b2 or CoronaVac from 23 February to 9 September 2021 in Hong Kong, and had data linkage to the electronic medical records of the Hong Kong Hospital Authority, were included. Those who had received mixed doses were excluded. Individuals were observed from the date of vaccination (first or second dose) until mortality, second dose vaccination (for first dose analysis), 21 days after vaccination, or 30 September 2021, whichever came first. Baseline characteristics of vaccinated individuals were balanced between groups using propensity score weighting. Outcome events were AESIs and all-cause mortality recorded during 21 days of post-vaccination follow-up after each dose, except anaphylaxis, for which the observation period was restricted to 2 days after each dose. Incidence rate ratios (IRRs) of AESIs and mortality comparing between CoronaVac and BNT162b2 recipients were estimated after each dose using Poisson regression models. Among 2,333,379 vaccinated individuals aged 18 years or above, the first dose analysis included 1,308,820 BNT162b2 and 955,859 CoronaVac recipients, while the second dose analysis included 1,116,677 and 821,560 individuals, respectively. The most frequently reported AESI among CoronaVac and BNT162b2 recipients was thromboembolism (first dose: 431 and 290 per 100,000 person-years; second dose: 385 and 266 per 100,000 person-years). After the first dose, incidence rates of overall AESIs (IRR = 0.98, 95% CI 0.89–1.08, p = 0.703) and mortality (IRR = 0.96, 95% CI 0.63–1.48, p = 0.868) associated with CoronaVac were generally comparable to those for BNT162b2, except for Bell palsy (IRR = 1.95, 95% CI 1.12–3.41, p = 0.018), anaphylaxis (IRR = 0.34, 95% CI 0.14–0.79, p = 0.012), and sleeping disturbance or disorder (IRR = 0.66, 95% CI 0.49–0.89, p = 0.006). After the second dose, incidence rates of overall AESIs (IRR = 0.97, 95% CI 0.87–1.08, p = 0.545) and mortality (IRR = 0.85, 95% CI 0.51–1.40, p = 0.516) were comparable between CoronaVac and BNT162b2 recipients, with no significant differences observed for specific AESIs. The main limitations of this study include residual confounding due to its observational nature, and the possibility of its being underpowered for some AESIs with very low observed incidences.ConclusionsIn this study, we observed that the incidences of AESIs (cumulative incidence rate of 0.06%–0.09%) and mortality following the first and second doses of CoronaVac and BNT162b2 vaccination were very low. The safety profiles of the vaccines were generally comparable, except for a significantly higher incidence rate of Bell palsy, but lower incidence rates of anaphylaxis and sleeping disturbance or disorder, following first dose CoronaVac versus BNT162b2 vaccination. Our results could help inform the choice of inactivated COVID-19 vaccines, mainly administered in low- and middle-income countries with large populations, in comparison to the safety of mRNA vaccines. Long-term surveillance on the safety profile of COVID-19 vaccines should continue.

In a retrospective study, Carlos King Ho Wong, Kristy Tsz Kwan Lau, and colleagues study adverse events reported following COVID-19 vaccination in Hong Kong.  相似文献   
94.
SNARE proteins, syntaxin-1A (Syn-1A) and SNAP-25, inhibit delayed rectifier K(+) channels, K(v)1.1 and K(v)2.1, in secretory cells. We showed previously that the mutant open conformation of Syn-1A (Syn-1A L165A/E166A) inhibits K(v)2.1 channels more optimally than wild-type Syn-1A. In this report we examined whether Syn-1A in its wild-type and open conformations would exhibit similar differential actions on the gating of K(v)1.2, a major delayed rectifier K(+) channel in nonsecretory smooth muscle cells and some neuronal tissues. In coexpression and acute dialysis studies, wild-type Syn-1A inhibited K(v)1.2 current magnitude. Of interest, wild-type Syn-1A caused a right shift in the activation curves of K(v)1.2 without affecting its steady-state availability, an inhibition profile opposite to its effects on K(v)2.1 (steady-state availability reduction without changes in voltage dependence of activation). Also, although both wild-type and open-form Syn-1A bound equally well to K(v)1.2 in an expression system, open-form Syn-1A failed to reduce K(v)1.2 current magnitude or affect its gating. This is in contrast to the reported more potent effect of open-form Syn-1A on K(v)2.1 channels in secretory cells. This finding together with the absence of Munc18 and/or 13-1 in smooth muscles suggested that a change to an open conformation Syn-1A, normally facilitated by Munc18/13-1, is not required in nonsecretory smooth muscle cells. Taken together with previous reports, our results demonstrate the multiplicity of gating inhibition of different K(v) channels by Syn-1A and is compatible with versatility of Syn-1A modulation of repolarization in various secretory and nonsecretory (smooth muscle) cell types.  相似文献   
95.
Systemic inflammation is central to aging‐related conditions. However, the intrinsic factors that induce inflammation are not well understood. We previously identified a cell‐autonomous pathway through which damaged nuclear DNA is trafficked to the cytosol where it activates innate cytosolic DNA sensors that trigger inflammation. These results led us to hypothesize that DNA released after cumulative damage contributes to persistent inflammation in aging cells through a similar mechanism. Consistent with this notion, we found that older cells harbored higher levels of extranuclear DNA compared to younger cells. Extranuclear DNA was exported by a leptomycin B‐sensitive process, degraded through the autophagosome–lysosomal pathway and triggered innate immune responses through the DNA‐sensing cGAS‐STING pathway. Patient cells from the aging diseases ataxia and progeria also displayed extranuclear DNA accumulation, increased pIRF3 and pTBK1, and STING‐dependent p16 expression. Removing extranuclear DNA in old cells using DNASE2A reduced innate immune responses and senescence‐associated (SA) β‐gal enzyme activity. Cells and tissues of Dnase2a?/? mice with defective DNA degradation exhibited slower growth, higher activity of β‐gal, or increased expression of HP‐1β and p16 proteins, while Dnase2a?/?;Sting?/? cells and tissues were rescued from these phenotypes, supporting a role for extranuclear DNA in senescence. We hypothesize a direct role for excess DNA in aging‐related inflammation and in replicative senescence, and propose DNA degradation as a therapeutic approach to remove intrinsic DNA and revert inflammation associated with aging.  相似文献   
96.
Flow-based microfluidic systems have been widely utilized for cell migration studies given their ability to generate versatile and precisely defined chemical gradients and to permit direct visualization of migrating cells. Nonetheless, the general need for bulky peripherals such as mechanical pumps and tubing and the complicated setup procedures significantly limit the widespread use of these microfluidic systems for cell migration studies. Here we present a simple method to power microfluidic devices for chemotaxis assays using the commercially available ALZET® osmotic pumps. Specifically, we developed a standalone chemotaxis platform that has the same footprint as a multiwell plate and can generate well-defined, stable chemical gradients continuously for up to 7 days. Using this platform, we validated the short-term (24 hours) and long-term (72 hours) concentration dependent PDGF-BB chemotaxis response of human bone marrow derived mesenchymal stem cells.  相似文献   
97.
miR-199a-5p plays a critical role in controlling cardiomyocyte survival. However, its significance in endothelial cell biology remains ambiguous. Here, we report the first evidence that miR-199a-5p negatively regulates angiogenic responses by directly targeting v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1). Induction of miR-199a-5p in human dermal microvascular endothelial cells (HMECs) blocked angiogenic response in Matrigel® culture, whereas miR-199a-5p-deprived cells exhibited enhanced angiogenesis in vitro. Bioinformatics prediction and miR target reporter assay recognized Ets-1 as a novel direct target of miR-199a-5p. Delivery of miR-199a-5p blocked Ets-1 expression in HMECs, whereas knockdown endogenous miR-199a-5p induced Ets-1 expression. Matrix metalloproteinase 1 (MMP-1), one of the Ets-1 downstream mediators, was negatively regulated by miR-199a-5p. Overexpression of Ets-1 not only rescued miR-199a-5p-dependent anti-angiogenic effects but also reversed miR-199a-5p-induced loss of MMP-1 expression. Similarly, Ets-1 knockdown blunted angiogenic response and induction of MMP-1 in miR-199a-5p-deprived HMECs. Examination of cutaneous wound dermal tissue revealed a significant down-regulation of miR-199a-5p expression, which was associated with induction of Ets-1 and MMP-1. Mice carrying homozygous deletions in the Ets-1 gene exhibited blunted wound blood flow and reduced abundance of endothelial cells. Impaired wound angiogenesis was associated with compromised wound closure, insufficient granulation tissue formation, and blunted induction of MMP-1. Thus, down-regulation of miR-199a-5p is involved in the induction of wound angiogenesis through derepressing of the Ets-1-MMP1 pathway.  相似文献   
98.
Highlights? Antimycobacterial antibiotics activate autophagy in Mtb-infected host cells ? Autophagy activation depends on cellular and mitochondrial reactive oxygen species ? Host cell autophagy is essential for antimycobacterial drug action in infected macrophages and flies ? Antibiotic-induced autophagy dampened proinflammatory responses in infected macrophages  相似文献   
99.
BACKGROUND: Organizing signals such as Sonic hedgehog are thought to specify neuronal subtype identity by regulating the expression of homeodomain proteins in progenitors of the embryonic neural tube. One of these, Nkx2.2, is necessary and sufficient for the development of V3 interneurons. RESULTS: We report that Olig genes, encoding basic helix-loop-helix (bHLH) proteins, are expressed in a subset of Nkx2.2 progenitors before the establishment of interneurons and oligodendroglial precursors. Gain-of-function analysis in transgenic mouse embryos indicates that Olig genes specifically inhibit the establishment of Sim1-expressing V3 interneurons. Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors. Colocalization of Olig and Nkx2.2 proteins at the dorsal extent of the Nkx2.2 expression domain is consistent with regulatory interactions that define the potential of progenitor cells in the border region. CONCLUSIONS: Interactions between homeodomain and Olig bHLH proteins evidently regulate neural cell fate acquisition and diversification in the ventral neural tube. In particular, interactions between Olig and Nkx2.2 proteins inhibit V3 interneuron development and promote the formation of alternate cell types, including those expressing Sox10.  相似文献   
100.
A new class of potent sulfoximine inhibitors for HIV-1 protease has been designed and synthesized. Substitution of the sulfoximine moiety into different parent compounds yields different inhibition effects. While our previously studied sulfoximine-based inhibitors display potency of 2.5 nM (IC(50)) against HIV-1 protease, introduction of the sulfoximine moiety into the asymmetric Indinavir yielded only micromolar inhibition. Docking studies showed structural variations in their modes of binding which explains this unexpected observation. The implication of these observations in the development of other sulfoximine inhibitors is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号