首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3703篇
  免费   233篇
  国内免费   34篇
  2024年   4篇
  2023年   13篇
  2022年   37篇
  2021年   53篇
  2020年   31篇
  2019年   32篇
  2018年   43篇
  2017年   54篇
  2016年   78篇
  2015年   126篇
  2014年   154篇
  2013年   266篇
  2012年   267篇
  2011年   260篇
  2010年   145篇
  2009年   136篇
  2008年   259篇
  2007年   270篇
  2006年   261篇
  2005年   250篇
  2004年   253篇
  2003年   243篇
  2002年   224篇
  2001年   36篇
  2000年   38篇
  1999年   33篇
  1998年   48篇
  1997年   48篇
  1996年   27篇
  1995年   30篇
  1994年   23篇
  1993年   23篇
  1992年   18篇
  1991年   18篇
  1990年   17篇
  1989年   14篇
  1988年   19篇
  1987年   6篇
  1986年   14篇
  1985年   6篇
  1984年   9篇
  1983年   15篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   5篇
  1978年   5篇
  1970年   4篇
  1968年   5篇
  1967年   2篇
排序方式: 共有3970条查询结果,搜索用时 31 毫秒
171.
Critical events for vasoconstrictor and growth factor signal transduction include stimulation of phospholipase Cgamma (PLCgamma) and elevation of intracellular calcium. c-Src has been proposed as a common mediator for these signals activated by both G protein-coupled receptors (GPCRs) and tyrosine kinase-coupled receptors (TKRs). Here we show that the GPCR kinase-interacting protein-1 (GIT1) is a substrate for c-Src that undergoes tyrosine phosphorylation in response to angiotensin II (AngII) and EGF in vascular smooth muscle and 293 cells. GIT1 associates with PLCgamma via the PLCgamma Src homology 2 and 3 domains constitutively, and the interaction is unaltered by AngII and EGF. GIT1 interaction with PLCgamma is required for PLCgamma activation based on inhibition of tyrosine phosphorylation and calcium mobilization after GIT1 knockdown with antisense GIT1 oligonucleotides. GIT1 interacts with PLCgamma via a novel Spa homology domain (SHD) and a coiled-coil domain. Deletion mutation analysis showed that GIT1(SHD) is required for AngII- and EGF-mediated PLCgamma activation (measured by phosphorylation of Tyr783 and inositol 1,4,5-trisphosphate formation). We propose that GIT1 is a novel regulator of PLCgamma function that mediates PLCgamma activation by c-Src and integrates signal transduction by GPCRs and TKRs.  相似文献   
172.
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.  相似文献   
173.
This paper describes the random fluidic self-assembly of metallic particles into addressable two-dimensional microarrays and the use of these arrays as a platform for constructing a biochip useful for bioassays. The basic units in the assembly were the microfabricated particles carrying a straightforward visible code and the corresponding array template patterned on a glass substrate. The particles consisted of a hydrophobic and magnetic Ni-polytetrafluoroethylene (PTFE) composite layer on one face, and on the other face a gold layer that was modified for biomolecular attachment. An array template was photoresist-patterned with spatially discrete microwells in which an electrodeposited Ni-PTFE hydrophobic composite layer and a hydrophobic photo-adhesive coating were deposited. The particles, after biomaterial attachment and binding processes in bulk, were self-assembled randomly onto the lubricated bonding sites on the chip substrate, driven by a combination of magnetic, hydrophobic, and capillary interactions. The encoding symbol carried by the particles was used as the signature for the identification of each target/assay attached to the particle surface. We demonstrate here the utility of microfabricated-encoded particle arrays for conducting multianalyte immunoassays in a parallel fashion with the use of imaging detection.  相似文献   
174.
BACKGROUND: Pancreatoblastoma (PBL) is a rare neoplasm that generally occurs in the pediatric age group and shows unique histopathology, including squamoid corpuscles that may contain tumor cells with optically clear nuclei (OCN) rich in biotin. In the English-language literature there have been two reports on the cytology of PBL, but neither of them refers to the cytologic features of squamoid corpuscles. CASE: A 3-year-old boy with nausea and general fatigue was referred to our center. Imaging studies showed an approximately 7.5-cm, left-sided abdominal mass and multiple metastases in the lung. The abdominal mass was biopsied, and its histology showed solid cellular nests with occasional acinar differentiation and squamoid corpuscles. Imprint cytology of the biopsied sample displayed cellular epithelial nests with focal acinar structures and foci composed of larger cells with a low nuclear/cytoplasmic ratio. These foci contained a few tumor cells with biotin-rich OCN and were determined to be squamoid corpuscles. CONCLUSION: Detection of occasional squamoid corpuscles with biotin-rich OCN can be useful in making a diagnosis of PBL on cytologic samples.  相似文献   
175.
CD9 has been shown to be essential for sperm/oocyte fusion in mice, the only non-redundant role found for a member of the tetraspanin family. CD9 can act in cis, reconstituting sperm/oocyte fusion when ectopically expressed in oocytes from CD9 null mice, or in trans, inhibiting sperm fusion when the large extracellular domain (LED) is added to CD9-positive oocytes as a soluble protein. In contrast to cis inhibition, the structural requirements of the trans inhibition by soluble CD9 LED are unknown. Here we show that human CD9 LED is as potent an inhibitor as mouse CD9 LED in mouse sperm/oocyte fusion assays and that CD9 LED can also inhibit sperm/oocyte binding. The two disulphide bridges that define membership of the tetraspanin family are critical for structure and function of human CD9 LED and mutation of a pentapeptide sequence in the hypervariable region further defines the critical region for trans inhibition.  相似文献   
176.
177.
The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, were determined from 1.8 A resolution X-ray diffraction data. Published structures of native LinB and its complex with 1,3-propanediol [Marek et al. (2000) Biochemistry 39, 14082-14086] were reexamined. The full and partial debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, conformed to the observed general trend that the sp(3)-hybridized carbon is the predominant electrophilic site for the S(N)2 bimolecular nucleophilic substitution in dehalogenation reaction. The 2-bromo-2-propene-1-ol product of 2,3-dibromopropene dehalogenation in crystal was positively identified by the gas chromatography-mass spectroscopy (GC-MS) technique. The 1,2-propanediol and 1-bromopropane-2-ol products of 1,2-dibromopropane dehalogenation in crystal were also supported by the GC-MS identification. Comparison of native LinB with its complexes showed high flexibility of residues 136-157, in particular, Asp146 and Glu147, from the cap domain helices alpha(4) and alpha(5)('). Those residues were shifted mainly in direction toward the ligand molecules in the complex structures. It seems the cap domain moves nearer to the core squeezing substrate into the active center closer to the catalytic triad. This also leads to slight contraction of the whole complex structures. The flexibility detected by crystallographic analysis is in remarkable agreement with flexibility observed by molecular dynamic simulations.  相似文献   
178.
The backbone dynamics of ribosome recycling factor (RRF) from Escherichia coli in water were characterized by (15)N NMR relaxation analysis and molecular dynamics (MD) simulation. RRF is composed of two domains connected by a joint region that consists of two peptide chains, such that the overall structure seems to mimic that of tRNA. MD trajectories indicated that the relative orientation of domains varies on the nanosecond time scale. We analyzed the observed (15)N T(1), T(2), and NOE using an extended model-free spectral density function in which the domain motions with a nanosecond time scale were considered. At 30 degrees C, the order parameters of slow motion () were determined to be approximately 0.9 for domain I and 0.7 for domain II, respectively. These values indicate that domain I is nearly fixed on the molecular diffusion frame, and domain II is wobbling in a cone for which the semi-angle is about 30 degrees.  相似文献   
179.
Cardiac L-type Ca current (I(Ca,L)) is controlled not only by voltage but also by Ca(2+)-dependent mechanisms. Precise implementation of I(Ca,L) in cardiac action potential models therefore requires thorough understanding of intracellular Ca(2+) dynamics, which is not yet available. Here, we present a novel formulation of I(Ca,L) for action potential models that does not explicitly require the knowledge of local intracellular Ca(2+) concentration ([Ca(2+)](i)). In this model, whereas I(Ca,L) is obtained as the product of voltage-dependent gating parameters (d and f), Ca(2+)-dependent inactivation parameters (f(Ca): f(Ca-entry) and f(Ca-SR)), and Goldman-Hodgkin-Katz current equation as in previous studies, f(Ca) is not a instantaneous function of [Ca(2+)](i) but is determined by two terms: onset of inactivation proportional to the influx of Ca(2+) and time-dependent recovery (dissociation). We evaluated the new I(Ca,L) subsystem in the framework of the standard cardiac action potential model. The new formulation produced a similar temporal profile of I(Ca,L) as the standard, but with different gating mechanisms. Ca(2+)-dependent inactivation gradually proceeded throughout the plateau phase, replacing the voltage-dependent inactivation parameter in the LRd model. In typical computations, f declined to approximately 0.7 and f(Ca-entry) to approximately 0.1, whereas deactivation caused fading of I(Ca,L) during final repolarization. These results support experimental findings that Ca(2+) entering through I(Ca,L) is essential for inactivation. After responses to standard voltage-clamp protocols were examined, the new model was applied to analyze the behavior of I(Ca,L) when action potential was prolonged by several maneuvers. Our study provides a basis for theoretical analysis of I(Ca,L) during action potentials, including the cases encountered in long QT syndromes.  相似文献   
180.
The alpha-chain of Fc epsilon RI (Fc epsilon RIalpha) plays a critical role in the binding of IgE to Fc epsilon RI. A fully human antibody interfering with this interaction may be useful for the prevention of IgE-mediated allergic diseases. Here, we describe the successful isolation of a human single-chain Fv antibody specific to human Fc epsilon RIalpha using human antibody phage display libraries. Using the non-immune phage antibody libraries constructed from peripheral blood lymphocyte cDNA from 20 healthy subjects, we isolated three phage clones (designated as FcR epsilon 27, FcR epsilon 51, and FcR epsilon 70) through two rounds of biopanning selection. The purified soluble scFv, FcR epsilon 51, inhibited the binding of IgE to recombinant Fc epsilon RIalpha, although both FcR epsilon 27 and FcR epsilon 70 showed fine binding specificity to Fc epsilon RIalpha. Since FcR epsilon 51 was determined to be a monomer by HPLC, BIAcore analysis was performed. The dissociation constant of FcR epsilon 51 to Fc epsilon RIalpha was estimated to be 20 nM, i.e., fortyfold lower than that of IgE binding to Fc epsilon RIalpha (K(d) = 0.5 nM). With these characteristics, FcR epsilon 51 exhibited inhibitory activity on the release of histamine from passively sensitized human peripheral blood mononuclear cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号