首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   20篇
  2023年   1篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   13篇
  2018年   17篇
  2017年   5篇
  2016年   14篇
  2015年   10篇
  2014年   17篇
  2013年   24篇
  2012年   32篇
  2011年   27篇
  2010年   7篇
  2009年   10篇
  2008年   11篇
  2007年   7篇
  2006年   10篇
  2005年   6篇
  2004年   10篇
  2003年   9篇
  2002年   8篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
81.
Cumulative damage in mitochondria by reactive oxygen species is thought to result in a decrease in mitochondrial respiratory function and to contribute to the age-related decline in the physiological function of organisms. The mitochondrial genome is also subjected to damage with age through deletions. The accumulation of deleted mitochondrial DNA (mtDNA) has been observed in various animals, but still remains unclear in insects. We examined the accumulation of deleted mtDNA in D. melanogaster at various ages from larvae to 65-day-old adults. When DNA extracted from whole bodies was examined by PCR and Southern hybridization, the age-related accumulation of deletions was not clear. However, when the accumulation of deleted mtDNA with age was examined separately in three parts of the body (head, thorax and abdomen), deleted mtDNA signals were detected more frequently in the thorax and the accumulation was age-dependent. Three of the deleted mtDNA were cloned, and the breakpoints of the deletions were identified. These results strongly suggest that deleted mtDNA accumulates in Drosophila with age in a tissue-specific manner.  相似文献   
82.
The effect of polyrotaxane-dipeptide (Val-Lys) conjugates on the uptake of a model dipeptide (Gly-Sar) was examined via human peptide transporter (hPEPT1) on HeLa cells. Here, Val-Lys groups are introduced to alpha-CDs, which are threaded onto a poly(ethylene oxide) chain capped with bulky end-groups (polyrotaxane). The Gly-Sar uptake via hPEPT1 was significantly inhibited in the polyrotaxane conjugates, and this inhibitory effect was not explained by the sum of interaction between hPEPT1 and alpha-CD-Val-Lys conjugates. Further, the inhibition was significantly greater than those observed in dextran-Val-Lys conjugates. Therefore, our data clearly suggests that supramolecular structure in the polyrotaxane conjugates contributes considerably to the inhibitory effect via multivalent binding of Val-Lys groups with hPEPT1.  相似文献   
83.
The relaxed potential energy surfaces of chitobiose were calculated based on the MM3-force field by optimizing dimer structures on a 10° grid spacing of the torsional angles about the glycosidic bonds (Φ,Ψ). The 36 conformations; the four combinations of the hydroxymethyl group orientations coupled with the nine of the secondary group ones— were assumed for each Φ,Ψ conformation. The four conformations, each differing in the hydroxymethyl group orientations, were considered for the whole Φ,Ψ space, and all the 36 conformations, for the restricted space of low energy. While the resulting energy map and the structures of the energy minima were similar to those proposed for cellobiose in many respects, more restricted energy profile was suggested for the relaxed map of chitobiose where differences in the energy level between the global minimum and the local minima were within 5.4 kcal/mol, compared with the equivalent value of 3.6 kcal/mol for cellobiose. Further depression of the global minimum occurred when the acidic residue was used. The Monte Carlo samples of the chitosan chain were generated based on the relaxed map to predict the unperturbed coil dimension in solution. The chitosan chains showed Gaussian behavior at x = 500 (x, degree of polymerization) and gave the characteristic ratio Cx, of about 70, which was much larger than the experimental values observed for the chitosan and cellulosic chains. © 1994 John Wiley & Sons, Inc.  相似文献   
84.
We characterized the nature and reaction mode of the cell growth-inhibitory factor (here designated CGIF) from rat peritoneal exudate cells (PEC). The soluble fraction separated from the lysate of Enterococcus faecalis-induced 24 hr PEC completely inhibited Con A-induced thymocyte mitogenesis. Gel filtration chromatography showed that CGIF has a molecular weight of approximately 23–25 kDa. Isoelectric focusing with Rotofor indicates that the factor has an isoelectronic point of 5.8–6.4. CGIF was inactivated by treatment at 70 C, for 30 min or by tryptic digestion, but the activity was not destroyed by the reduction with dithiothreitol. As well as thymocyte proliferation, CGIF completely suppressed 3H-thymidine incorporation of splenocytes which were stimulated by either Con A or LPS, suggesting the factor is effective on both T and B cells. The acting point of the inhibitor appeared to be a later stage of the lymphocyte activation sequence, since it was still effective when added 28.5 hr after the addition of Con A. CGIF also reduced the viability of these cells when added with mitogens such as Con A or LPS. CGIF thus appears to be distinct from interleukin-1 receptor antagonist or transforming growth factor-β.  相似文献   
85.
86.
Hepatic stellate cells (HSC) are central to liver fibrosis. The eicosanoid pathway and cyclooxygenase-2 (COX-2) may be an important signaling mechanism in HSC. We investigated the role of COX-2, prostaglandin E(2) (PGE(2)) and prostaglandin I(2) (PGI(2)) in proliferation of LI90, an immortalized cell line of HSC. Our results showed that COX-2 was upregulated by platelet-derived growth factor (PDGF), a mitogen in HSC. COX-2 was responsible for the production of PGE(2) and PGI(2) in PDGF-stimulated LI90 cells. Furthermore, we demonstrated that COX-2 and PGE(2) mediated the proliferative response of LI90 to PDGF while synthetic analogue of PGI(2) exhibited anti-proliferative effect. Our findings suggest complex interactions of prostaglandins in liver fibrogenesis. In vivo studies using animal models are needed to elucidate the effect of COX-2 inhibition by non-steroidal anti-inflammatory drugs or COX-2 inhibitor in hepatic fibrosis.  相似文献   
87.
88.
Hydrophobic bile acids induce apoptosis in both colon cancer cells and hepatocytes. The mechanism by which colon cancer cells respond to bile acids is thought to be different from that of hepatocytes. Therefore, we investigated the characteristics of apoptosis in colon cancer cell line HCT116. Hydrophobic bile acids, i.e., deoxycholic acid (DCA), and chenodeoxycholic acid, induced apoptosis in HCT116 cells. Apoptotic indications were detectable at as early as 30 min and the extent increased in time- and concentration-dependent manners. SDS and a hydrophilic bile acid, cholic acid, did not induce apoptosis even at cytotoxic concentrations. Pretreatment with cycloheximide failed to inhibit apoptosis, suggesting that protein synthesis is not involved in the apoptotic response. Release of cytochrome c from mitochondria and activation of caspase-9 were detectable after 5 and 10 min, respectively, whereas remarkable activation of Bid was not detected. Ursodeoxycholic acid (UDCA) protected HCT116 cells from DCA-induced apoptosis but a preincubation period of > or =5 h was required. Nevertheless, UDCA did not inhibit cytochrome c release from mitochondria. Our results indicate that hydrophobic bile acids induce apoptosis in HCT116 cells by releasing cytochrome c from mitochondria via an undefined but specific mechanism, and that UDCA protects HCT116 cells by acting downstream of cytochrome c release.  相似文献   
89.
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti‐anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K+‐Cl? co‐transporter 2 (KCC2) in the sensitization to morphine‐induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ‐aminobutyric acid A‐type receptor (GABAAR) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine‐induced hyperlocomotion, which is accompanied by the up‐regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down‐regulation of protein phosphatase‐1 (PP‐1) as well as the up‐regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP‐1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre‐treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine‐induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ‐PP‐1‐KCC2 pathway by chronic treatment with zolpidem.  相似文献   
90.
The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na+ transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel “noncanonical” regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号