The precise molecular mechanisms responsible for sepsis-induced myocardial dysfunction remain undefined. Toll-like receptor-4 (TLR-4) engages lipopolysaccharide (LPS) and activates signaling pathways leading to the expression of proinflammatory cytokines implicated in myocardial dysfunction. We determined whether TLR-4 was necessary for LPS-induced myocardial dysfunction in vivo. The effects of LPS on left ventricular (LV) function were studied in mice with defective TLR-4 signaling (C3H/HeJ, TLR-4 deficient) and wild-type mice (C3HeB/FeJ). Mice (n = 5/group) were injected with LPS or diluent, and LV function was examined by using two-dimensional echocardiography and conductance catheters. LPS significantly decreased all indexes of LV function in wild-type mice when compared with controls; LV function was not depressed in the LPS-treated TLR-4-deficient mice relative to controls. LPS increased myocardial nitric oxide synthase-2 expression and cGMP only in wild-type mice. This study suggests that TLR-4 mediates the LV dysfunction that occurs in LPS-induced shock. Therefore, TLR-4 might be a therapeutic target for attenuating the effects of LPS on the heart. 相似文献
The effects of U-61,431F, ciprostene, a stable prostacyclin analogue, were examined on the proliferation of cultured quiescent bovine aortic endothelial cells (EC) and smooth muscle cells (SMC). After stimulation with 5% fetal calf serum, U-61,431F suppressed both the DNA synthesis and proliferation of SMC dose-dependently at the concentration of 3-100 microM, but had no effect on either of them in EC at a concentration of up to 30 microM. The inhibitory effect on DNA synthesis was greater in SMC than in EC at 3-50 microM. When SMC were stimulated with platelet-derived growth factor (PDGF) for 2 hrs followed by a 22-hr incubation with insulin, U-61,431F (1-50 microM) administered at the time of PDGF stimulation did not inhibit DNA synthesis. SMC initiated and terminated DNA synthesis at about 15-18 h and 24 h after stimulation with serum, respectively. Inhibition of DNA synthesis in serum-stimulated SMC as a function of the addition time of U-61,431F reduced at 3-12 h after the stimulation. U-61,431F raised the cyclic AMP (cAMP) content in SMC. Moreover, a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, and a more specific cAMP phosphodiesterase inhibitor, Ro 20-1724, augmented the inhibition of DNA synthesis in SMC concomitant with further elevation of cAMP level. These results suggest that U-61,431F inhibits DNA synthesis of SMC acting in the progression stage rather than in the competence stage, with little antiproliferative effect on EC. cAMP may play an important role in its antiproliferative action in SMC. 相似文献
The steroid-binding domain of the human glucocorticoid receptor was expressed in Escherichia coli either as a fusion protein with protein A or under control of the T7 RNA polymerase promoter. The recombinant proteins were found to bind steroids with the normal specificity for a glucocorticoid receptor but with reduced affinity (Kd for triamcinolone acetonide approximately 70 nM). Glycerol gradient analysis of the E. coli lystate containing the recombinant protein indicated no interaction between the glucocorticoid receptor fragment and heat shock proteins. However, synthesis of the corresponding fragments of glucocorticoid receptor in vitro using rabbit reticulocyte lystate resulted in the formation of proteins that bound triamcinolone acetonide with high affinity (Kd 2nM). Glycerol gradient analysis of these proteins, with and without molybdate, indicated that the in vitro synthesised receptor fragments formed complexes with hsp90 as previously shown for the full-length rat glucocorticoid receptor. Radiosequence analysis of the recombinant steroid-binding domain expressed in E. coli and affinity labelled with dexamethasone mesylate identified binding of the steroid to Cys-638 predominantly. However, all cysteine residues within the steroid-binding domain were affinity labelled to a certain degree indicating that the recombinant protein has a structure similar to the native receptor but more open and accessible. 相似文献
Urban waterlogging stems from coverage with impervious surfaces and increasing rainfall intensity from climate change and variability, meaning that storm water cannot readily infiltrate the ground and excessive surface runoff leads to urban flooding. To reduce related environmental and safety risks, rainfall and groundwater level research was carried out in Kyoto Prefecture with two rain gardens (RG1 and RG2) to investigate flood mitigation functions using a tank model. During the 134 days of monitoring from July 14, 2017, to November 25, 2017, RG1 had seven overflow events with an average runoff control ratio of 63.94%, and RG2 had one event with a ratio of 95.97%. The RG1 tank model (two stages) showed that initial storage for the first and second depths was 6.912?×?10?11 and 0 mm, respectively. The heights of the discharge holes were 20.857 and 0.784 mm for the first stage and 0.659 mm for the second stage, and the discharge hole coefficients were 0.529 and 0.002 for the first stage and 0.004 for the second stage. The results showed that RG1 had penetration hole coefficients of 0.138 (first stage) and 0.254 (second stage), with a water balance error of 0.017 (<?0.02) and a Nash–Sutcliffe efficiency coefficient of 0.922, indicating better reliability and quality than RG2 with the one-stage tank model. Peak flow simulation for mitigation showed that RG1 had a high overflow control ratio (mitigation time 2 h for instant rainfall of 100 mm/h), and can therefore be considered appropriate for other urban areas of Japan.
Immunohistochemical distribution of laminin gamma2 chain, a subunit of the basement membrane protein laminin-5, was examined in 19 cases of human embryos and foetuses ranging from 4 to 25 weeks of gestation. Laminin gamma2 was first detected in the basement membranes underlying ectodermal epithelial tissues, such as the skin and tooth, as early as 5-6 weeks of gestation. Between 6-7 and 12-13 weeks, laminin gamma2 was detected in the basement membranes of various endodermal epithelial tissues, such as the bronchus, oesophagus, stomach, intestines, urinary bladder, gallbladder and hepatopancreatic duct. The deposition of laminin gamma2 in basement membrane was associated with the process of morphogenesis. In the small intestine, laminin gamma2 first appeared in the basement membrane of the primitive short villi, and its level gradually increased in the villus region but decreased in the cryptic region during the maturation of the organ. In addition, non-basement membrane immunoreactivity for laminin gamma2 was detected in some mesoderm-derived tissues, such as the cartilage and skeletal and smooth muscle fibres. These results suggest a common role of laminin-5 and some specific roles of its gamma2 chain in the morphogenesis of human tissues. 相似文献
Vinorelbine (VNR), a vinca alkaloid anticancer drug, often causes vascular injury such as venous irritation, vascular pain, phlebitis, and necrotizing vasculitis. The purpose of this study was to identify the mechanisms that mediate the cell injury induced by VNR in porcine aorta endothelial cells (PAECs). PAECs were exposed to VNR for 10 min followed by further incubation in serum-free medium without VNR. The exposure to VNR (0.3–30 μM) decreased the cell viability concentration and time dependently. The incidence of apoptotic cells significantly increased at 12 h after transient exposure to VNR. At the same time, VNR increased the activity of caspases. Interestingly, VNR rapidly depleted intracellular glutathione (GSH) and increased intracellular reactive oxygen species (ROS) production. Moreover, VNR depolarized the mitochondrial membrane potential and decreased cellular ATP levels. These VNR-induced cell abnormalities were almost completely inhibited by GSH and N-acetylcysteine. On the other hand, l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, aggravated the VNR-induced loss of cell viability. These results clearly demonstrate that VNR induces oxidative stress by depleting intracellular GSH and increasing ROS production in PAECs, and oxidative stress plays an important role in the VNR-induced cell injury. 相似文献
The immunostimulatory effects of the representative dental resin monomer 2-hydroxyethyl methacrylate (HEMA), a HEMA derivative that does not contain a double bond (2-hydroxyethyl isobutyrate, HEIB), and polymerized water-soluble oligomers of HEMA (PHEMA) were investigated. It is known that expression levels of either or both of CD54 and CD86 in THP-1 cells are increased by exposure to sensitizing substances. In this study, the expression levels of CD54 and CD86, the production of reactive oxygen species (ROS), and the viability of the cells were measured after 24 h of incubation with these materials at different concentrations. The concentrations of the materials that induced the expression of both CD54 and CD86 were low in the following order: NiSO4, HEMA, and methyl methacrylate (MMA). These results indicate that these dental resin monomers have lower sensitizing potentials than NiSO4. Although HEIB, which lacks a double bond, resulted in negligible ROS production and reduced cytotoxicity than HEMA, it induced the expression of CD54 and CD86. Comparison of the results for HEMA and HEIB indicates that dental resin monomer-induced sensitization may be related not only to the oxidative stress related to the methacryloyl group but also to the structures of these compounds. Of particular interest is the result that a water-soluble PHEMA oligomer with a relatively high-molecular weight also exhibited negligible cytotoxicity, whereas the expression level of CD54 increased after exposure to PHEMA at a high concentration. This result serves as a warning that polymerized substances also have the potential to induce sensitization. This study provides insight into the nature of allergic responses to dental resin materials in clinical use and may facilitate the development of more biocompatible restorative materials in the future. 相似文献