首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1433篇
  免费   82篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   12篇
  2018年   13篇
  2017年   10篇
  2016年   35篇
  2015年   37篇
  2014年   47篇
  2013年   74篇
  2012年   41篇
  2011年   50篇
  2010年   27篇
  2009年   24篇
  2008年   70篇
  2007年   67篇
  2006年   56篇
  2005年   53篇
  2004年   59篇
  2003年   62篇
  2002年   64篇
  2001年   52篇
  2000年   53篇
  1999年   56篇
  1998年   25篇
  1997年   27篇
  1996年   17篇
  1995年   29篇
  1994年   16篇
  1993年   15篇
  1992年   36篇
  1991年   31篇
  1990年   28篇
  1989年   33篇
  1988年   17篇
  1987年   18篇
  1986年   23篇
  1985年   25篇
  1984年   27篇
  1983年   15篇
  1982年   14篇
  1981年   10篇
  1980年   14篇
  1979年   19篇
  1978年   11篇
  1977年   11篇
  1976年   10篇
  1975年   12篇
  1974年   10篇
  1973年   16篇
排序方式: 共有1515条查询结果,搜索用时 15 毫秒
71.
1. Glutathione reductase (NAD(P)H:oxidized-glutathione oxidoreductase, EC. 1.6.4.2) from human erythrocytes was purified 49 000-fold with an overall yield of 15% and a 280/460 nm absorbance ratio of 6.03. The procedure used was the method of Worthington and Rosemeyer modified by addition of heating and recrystallization. 2. It was concluded from the results of purification, electrofocusing and inhibition studies that glutathione reductase is a single enzyme which used both NADPH and NADH as hydrogen donors. 3. Apoenzyme cross-reacts with the antibody to the holoenzyme but has a slightly reduced affinity to the antibody. Apoenzyme can be removed from the hemolysate by heating and centrifugation without loss of holoenzyme. 4. Indirect immunological assay of the specific activity of the erythrocyte glutathione reductase is possible in the enzyme saturated with FAD.  相似文献   
72.
By employing bovine serum albumin as antigen and the capsular polysaccharide of Klebsiella pneumoniae as adjuvant, maintenance and amplification of immunological memory were analyzed in an in vivo culture system in mice. For this purpose, the double cell transfer technique was employed to minimize the influence of regulatory factors on memory expression. Memory associated with primed cells is maintained at the original level during in vivo culture for at least a month in the absence of antigen. In contrast, memory is amplified more than 30 times during this period by stimulation with antigen. This secondary increase in memory does not require the action of adjuvant. Neither the residual primary antigen nor preformed primary antibody seems to play a significant role in the maintenance and amplification of memory of the primed cells. From these results it is probable that the enduring immunological memory in actively immunized mice is conveyed by long-lived memory cells, and additional antigenic stimulating on once-established memory cells serve to amplify (not simply to maintain) memory in a secondary fashion.  相似文献   
73.
Bovine Factor X can be activated by two alternative pathways. The first, favored at high concentrations of the complex of tissue factor and Factor VII, is initiated by the action of Factor VII on Factor X to cleave an activation peptide from the NH2 terminus of the heavy chain, to produce alpha-Xa. This is then converted autocatalytically to another form of Factor Xa, beta-Xa, by the loss of a 17-residue glycopeptide from the COOH terminus of the heavy chain, in a lipid-dependent reaction. The alternative pathway, favored at lower activator concentrations, is initiated by the action of Factor Xa on Factor X, in the presence of lipid, to release the same COOH-terminal peptide as is produced in the conversion of alpha-Xa to beta-Xa. The intermediate produced by the loss of this peptide from Factor X,I1, can be activated directly to beta-Xa by the tissue factor-Factor VII complex, with the loss of the same NH2-terminal peptide as is produced in the conversion of Factor X to alpha-Xa. The autocatalytic activation of Factor X by Factor Xa described previously occurs to a marked extent only at very low activator concentrations, and has been shown to proceed largely by the loss of the normal NH2-terminal peptide from the heavy chain of I1-Initial experiments show that neither peptide affects the rate of coagulation by either the extrinsic or intrinsic pathways. The amino acid sequences have been determined on both sides of the peptide cleavages, and it has been shown that the cleavage sites are the same, regardless of the pathway of activation. The amino acid sequence and carbohydrate composition of the COOH-terminal peptide have been determined. The carbohydrate moiety is attached via an O-glycosidic linkage at a threonine residue, and contains galactosamine but no glucosamine.  相似文献   
74.
N-Chlorosulfonyl dicyclohexylamine (CSD) was synthesized as a potent inhibitor of spermidine synthase and analyzed for antiproliferative effects on leukemic cells. The compound specifically inhibited spermidine synthase in a competitive mode with the substrate putrescine (Ki, 1.8 X 10(-7) M). When human leukemia Molt4B cells were cultured in the presence of the inhibitor, the intracellular level of spermidine and the rate of cell proliferation were markedly depressed. In these polyamine depleted and growth retarded cells the synthesis of protein, but not of DNA or RNA, was found to be significantly diminished.  相似文献   
75.
The cell surface engineering system, in which functional proteins are genetically displayed on microbial cell surfaces, has recently become a powerful tool for applied biotechnology. Here, we report on the surfactant modification of surface-displayed lipase to improve its performance for enzymatic synthesis reactions. The lipase activities of the surfactant-modified yeast displaying Rhizopus oryzae lipase (ROL) were evaluated in both aqueous and nonaqueous systems. Despite the similar lipase activities of control and surfactant-modified cells in aqueous media, the treatment with nonionic surfactants increased the specific lipase activity of the ROL-displaying yeast in n-hexane. In particular, the Tween 20-modified cells increased the cell surface hydrophobicity significantly among a series of Tween surfactants tested, resulting in 8–30 times higher specific activity in organic solvents with relatively high log P values. The developed cells were successfully used for the enzymatic synthesis of phospholipids and fatty acid methyl esters in n-hexane, whereas the nontreated cells produced a significantly low yield. Our results thus indicate that surfactant modification of the cell surface can enhance the potential of the surface-displayed lipase for bioconversion.  相似文献   
76.
The hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate (PIP2) by cytosolic phospholipase C from human platelets was determined. Cytosolic fractions were prepared from platelets that had or had not been preactivated with thrombin. Thrombin pretreatment did not affect cytosolic phospholipase C activity. In both cytosolic fractions, phospholipase C was activated by GTP and GTP gamma S. This action is observed in the presence of 2 mM EGTA. GDP was as effective as GTP in stimulating cytosolic phospholipase C in the presence of Ca2+ or EGTA. Partially purified phospholipase C obtained from platelet cytosol is activated by GTP, but not by GTP gamma S, in the presence of 2 mM EGTA. However, in the presence of 6 microM Ca2+, both GTP and GTP gamma S stimulated the partially purified phospholipase C. Our present information indicates that GTP and GDP have a direct effect on the cytosolic phospholipase C.  相似文献   
77.
Toll-like receptors (TLRs) play a key role in linking pathogen recognition with the induction of innate immunity. They have been implicated in the pathogenesis of chronic inflammatory diseases, representing potential targets for prevention/treatment. Vegetable-rich diets are associated with the reduced risk of several inflammatory disorders. In the present study, based on an extensive screening of vegetable extracts for TLR-inhibiting activity in HEK293 cells co-expressing TLR with the NF-κB reporter gene, we found cabbage and onion extracts to be the richest sources of a TLR signaling inhibitor. To identify the active substances, we performed activity-guiding separation of the principal inhibitors and identified 3-methylsulfinylpropyl isothiocyanate (iberin) from the cabbage and quercetin and quercetin 4′-O-β-glucoside from the onion, among which iberin showed the most potent inhibitory effect. It was revealed that iberin specifically acted on the dimerization step of TLRs in the TLR signaling pathway. To gain insight into the inhibitory mechanism of TLR dimerization, we developed a novel probe combining an isothiocyanate-reactive group and an alkyne functionality for click chemistry and detected the probe bound to the TLRs in living cells, suggesting that iberin disrupts dimerization of the TLRs via covalent binding. Furthermore, we designed a variety of iberin analogues and found that the inhibition potency was influenced by the oxidation state of the sulfur. Modeling studies of the iberin analogues showed that the oxidation state of sulfur might influence the global shape of the isothiocyanates. These findings establish the TLR dimerization step as a target of food-derived anti-inflammatory compounds.  相似文献   
78.
High-performance liquid chromatographic determination of four short-chain aliphatic aldehydes using fluorescence detection was carried out with 4-(N,N-dimethylaminosulphonyl)-7-hydrazino-2,1,3-benzoxadiazole (DBD-H). DBD-H derivatives with three aliphatic aldehydes — formaldehyde, acetaldehyde and propionaldehyde — were synthesized and their fluorescence properties were examined. Relative fluorescence intensities of these compounds in acetonitrile were ca. ten-fold larger than those in aqueous acetonitrile. DBD-hydrazones could be separated by reversed-phase chromatography using aqueous acetonitrile as eluent and detection at 560 nm with excitation at 445 nm. Submicromolar levels of formaldehyde, acetaldehyde, propionaldehyde and butylaldehyde could be determined. The HPLC procedure using propionaldehyde as internal standard was applied to the measurement of acetaldehyde levels in normal human plasma before and 30 min after ingestion of ethanol.  相似文献   
79.
The target of rapamycin (Tor) protein plays central roles in cell growth. Rapamycin inhibits cell growth and promotes cell cycle arrest at G1 (G0). However, little is known about whether Tor is involved in other stages of the cell division cycle. Here we report that the rapamycin-sensitive Tor complex 1 (TORC1) is involved in G2/M transition in S. cerevisiae. Strains carrying a temperature-sensitive allele of KOG1 (kog1-105) encoding an essential component of TORC1, as well as yeast cell treated with rapamycin show mitotic delay with prolonged G2. Overexpression of Cdc5, the yeast polo-like kinase, rescues the growth defect of kog1-105, and in turn, Cdc5 activity is attenuated in kog1-105 cells. The TORC1-Type2A phosphatase pathway mediates nucleocytoplasmic transport of Cdc5, which is prerequisite for its proper localization and function. The C-terminal polo-box domain of Cdc5 has an inhibitory role in nuclear translocation. Taken together, our results indicate a novel function of Tor in the regulation of cell cycle and proliferation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号