首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   55篇
  国内免费   88篇
  806篇
  2024年   2篇
  2023年   12篇
  2022年   21篇
  2021年   20篇
  2020年   18篇
  2019年   35篇
  2018年   24篇
  2017年   22篇
  2016年   28篇
  2015年   39篇
  2014年   35篇
  2013年   63篇
  2012年   83篇
  2011年   65篇
  2010年   36篇
  2009年   29篇
  2008年   43篇
  2007年   44篇
  2006年   30篇
  2005年   28篇
  2004年   35篇
  2003年   32篇
  2002年   23篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有806条查询结果,搜索用时 16 毫秒
41.
Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.  相似文献   
42.
43.
We have previously shown that infection with Chlamydia pneumoniae can significantly exacerbate atherosclerotic lesions in LDLR-/- mice concurrently fed a high cholesterol diet in 6 or 9 months. We now report that a period of 4 month was sufficient for demonstrating the C. pneumoniae atherogenicity. However, heat inactivation of C. pneumoniae organisms completely abolished the ability of C. pneumoniae to exacerbate the atherosclerotic lesions, suggesting that viable organism infection may be required for the C. pneumoniae atherogenicity.  相似文献   
44.
The historical seal populations at King George Island, Antarctica, for the past 1,500 years, have been estimated from the seal-hair abundance, bio-element concentrations, total organic carbon (TOC) and total nitrogen (TN) in one terrestrial sediment sequence influenced by seal excrement. Prior to human interference, the seal populations exhibited dramatic fluctuations with two peaks during 750–500 and 1400–1100 years before present (yr B.P.) and two troughs during 1100–750 and 500–200 yr B.P. A tentative comparison of the seal populations and historical climates in the Antarctic Peninsula region suggests that the seal populations may be linked to climate-related factors such as sea-ice coverage and atmospheric temperature.  相似文献   
45.
Wen R  Chen Y  Schuman J  Fu G  Yang S  Zhang W  Newman DK  Wang D 《The EMBO journal》2004,23(20):4007-4017
Phospholipase Cgamma1 (PLCgamma1) has been reported to be expressed predominantly in T cells and to play an important role in T-cell receptor signaling. Here we show that PLCgamma1 is expressed throughout B-cell development, with high expression in B-cell progenitors, and is involved in pre-B-cell receptor (pre-BCR) signaling. Reduced expression of PLCgamma1, in the absence of PLCgamma2 (PLCgamma1+/-PLCgamma2-/-), impedes early B-cell development at the pro-B- to pre-B-cell transition and impairs immunoglobulin heavy chain allelic exclusion, hallmarks of defective pre-BCR signaling. In contrast, early B-cell development is largely normal, whereas late B-cell maturation is impaired in the absence of PLCgamma2 alone (PLCgamma2-/-) and overexpression of PLCgamma1 in PLCgamma2-/- mice fails to restore BCR-mediated B-cell proliferation and maturation. These studies reveal an essential role of PLCgamma1, distinct from that of PLCgamma2, in B-cell development.  相似文献   
46.
Yang Y  Shao Z  Chen X  Zhou P 《Biomacromolecules》2004,5(3):773-779
Fluorescence and circular dichroism spectroscopy were used to monitor the conformational transition of regenerated Bombyx mori silk fibroin (RSF) in aqueous solutions under different conditions. According to the analysis of fluorescence spectra using anilinonaphthalene-8-sulfonic acid magnesium salt (ANS) as an external probe, the destruction of the hydrophobic core prior to the secondary structure change suggests that this collapse may initiate the conformational transition from random coil to beta-sheet for RSF. The temperature dependence of the structural changes of RSF, detected by both fluorescence spectroscopy and circular dichroism, shows a reversible process upon heating and recooling, with the midpoint around 45 degrees C. The results also indicate that most of the tryptophan (Trp) residues contained in silk fibroin are concentrated on the surface of the unfolded protein. However, they will change their location in the highly ordered structure (e.g., becoming more homogeneous) with the conformational transition of silk fibroin. Moreover, our studies also suggest that the presence of water plays a crucial role during the structure changes of fibroin.  相似文献   
47.
48.
49.
Escherichia coli RNase T, the enzyme responsible for the end-turnover of tRNA and for the 3' maturation of 5 S and 23 S rRNAs and many other small, stable RNAs, was examined in detail with respect to its substrate specificity. The enzyme was found to be a single-strand-specific exoribonuclease that acts in the 3' to 5' direction in a non-processive manner. However, although other Escherichia coli exoribonucleases stop several nucleotides downstream of an RNA duplex, RNase T can digest RNA up to the first base pair. The presence of a free 3'-hydroxyl group is required for the enzyme to initiate digestion. Studies with RNA homopolymers and a variety of oligoribonucleotides revealed that RNase T displays an unusual base specificity, discriminating against pyrimidine and, particularly, C residues. Although RNase T appears to bind up to 10 nucleotides in its active site, its specificity is defined largely by the last 4 residues. A single 3'-terminal C residue can reduce RNase T action by >100-fold, and 2-terminal C residues essentially stop the enzyme. In vivo, the substrates of RNase T are similar in that they all contain a double-stranded stem followed by a single-stranded 3' overhang; yet, the action of RNase T on these substrates differs. The substrate specificity described here helps to explain why the different substrates yield different products, and why certain RNA molecules are not substrates at all.  相似文献   
50.
Escherichia coli RNase T, an RNA-processing enzyme and a member of the DEDD exonuclease superfamily, was examined using sequence analysis and site-directed mutagenesis. Like other DEDD exonucleases, RNase T was found to contain three conserved Exo motifs that included four invariant acidic residues. Mutagenesis of these motifs revealed that they are essential for RNase T activity, indicating that they probably form the RNase T catalytic center in a manner similar to that found in other DEDD exonucleases. We also identified by sequence analysis three short, but highly conserved, sequence segments rich in positively charged residues. Site-directed mutagenesis of these regions indicated that they are involved in substrate binding. Additional analysis revealed that residues within the C-terminal region of RNase T are essential for RNase T dimerization and, consequently, for RNase T activity. These data define the domains necessary for RNase T action, and together with information in the accompanying article, have led to the formulation of a detailed model for the structure and mechanism of action of RNase T.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号