首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   10篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
71.
Alzheimer''s β-amyloid precursor protein (APP) associates with kinesin-1 via JNK-interacting protein 1 (JIP1); however, the role of JIP1 in APP transport by kinesin-1 in neurons remains unclear. We performed a quantitative analysis to understand the role of JIP1 in APP axonal transport. In JIP1-deficient neurons, we find that both the fast velocity (∼2.7 μm/s) and high frequency (66%) of anterograde transport of APP cargo are impaired to a reduced velocity (∼1.83 μm/s) and a lower frequency (45%). We identified two novel elements linked to JIP1 function, located in the central region of JIP1b, that interact with the coiled-coil domain of kinesin light chain 1 (KLC1), in addition to the conventional interaction of the JIP1b 11–amino acid C-terminal (C11) region with the tetratricopeptide repeat of KLC1. High frequency of APP anterograde transport is dependent on one of the novel elements in JIP1b. Fast velocity of APP cargo transport requires the C11 domain, which is regulated by the second novel region of JIP1b. Furthermore, efficient APP axonal transport is not influenced by phosphorylation of APP at Thr-668, a site known to be phosphorylated by JNK. Our quantitative analysis indicates that enhanced fast-velocity and efficient high-frequency APP anterograde transport observed in neurons are mediated by novel roles of JIP1b.  相似文献   
72.
73.
Molecular genetics and evolution of melanism in the cat family   总被引:1,自引:0,他引:1  
Melanistic coat coloration occurs as a common polymorphism in 11 of 37 felid species and reaches high population frequency in some cases but never achieves complete fixation. To investigate the genetic basis, adaptive significance, and evolutionary history of melanistic variants in the Felidae, we mapped, cloned, and sequenced the cat homologs of two putative candidate genes for melanism (ASIP [agouti] and MC1R) and identified three independent deletions associated with dark coloration in three different felid species. Association and transmission analyses revealed that a 2 bp deletion in the ASIP gene specifies black coloration in domestic cats, and two different "in-frame" deletions in the MC1R gene are implicated in melanism in jaguars and jaguarundis. Melanistic individuals from five other felid species did not carry any of these mutations, implying that there are at least four independent genetic origins for melanism in the cat family. The inferred multiple origins and independent historical elevation in population frequency of felid melanistic mutations suggest the occurrence of adaptive evolution of this visible phenotype in a group of related free-ranging species.  相似文献   
74.
N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (AcSDKP) is a natural inhibitor of pluripotent hematopoietic stem cell proliferation and is normally found in human plasma. Because AcSDKP is hydrolyzed by the N‐terminal active site of angiotensin converting enzyme and partially eliminated in urine, its plasma level is a result of a complex balance between its production, hydrolysis by ACE, and renal elimination. In this study, we attempted to establish an enzyme immunoassay (EIA) for quantifying AcSDKP‐like immunoreactive substance (IS), which is applicable for monitoring plasma AcSDKP levels in healthy subjects and patients with chronic renal failure. Using β‐ d ‐galactosidase‐labeled Gly‐γAbu‐SDKP as a marker antigen, an anti‐rabbit IgG‐coated immunoplate as a bound/free separator and 4‐methylumbelliferyl‐β‐ d ‐galactopyranoside as a fluorogenic substrate, a highly sensitive and specific EIA was developed for the quantification of AcSDKP‐IS in human plasma. The lower limit of quantification was 0.32 fmol/well, and the sharp inhibition competitive EIA calibration curve obtained was linear between 8.0 and 513 fmol/ml. This EIA was so sensitive that only 10 µl plasma sample was required for a single assay. The coefficients of variation (reproducibility) for human plasma concentrations of 0.2 and 2.1 pmol/ml were 7.2 and 7.7%, respectively, for inter‐assay and 13.3 and 7.8% for intra‐assay comparisons. Plasma AcSDKP‐IS level was significantly higher in patients with chronic renal failure (0.92 ± 0.39 pmol/ml) compared with healthy subjects (0.29 ± 0.07 pmol/ml). These results suggest that our EIA may be useful to evaluate plasma AcSDKP level as a biomarker in various patients. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
75.
After osmotic swelling, cell volume is regulated by a process called regulatory volume decrease (RVD). Although actin cytoskeletons are known to play a regulatory role in RVD, it is not clear how actin‐binding proteins are involved in the RVD process. In the present study, an involvement of an actin‐binding protein, α‐actinin‐4 (ACTN4), in RVD was examined in human epithelial HEK293T cells. Overexpression of ACTN4 significantly facilitated RVD, whereas siRNA‐mediated downregulation of endogenous ACTN4 suppressed RVD. When the cells were subjected to hypotonic stress, the content of ACTN4 increased in a 100,000 × g pellet, which was sensitive to cytochalasin D pretreatment. Protein overlay assays revealed that ABCF2, a cytosolic member of the ABC transporter superfamily, is a binding partner of ACTN4. The ACTN4‐ABCF2 interaction was markedly enhanced by hypotonic stimulation and required the NH2‐terminal region of ABCF2. Overexpression of ABCF2 suppressed RVD, whereas downregulation of ABCF2 facilitated RVD. We then tested whether ABCF2 has a suppressive effect on the activity of volume‐sensitive outwardly rectifying anion channel (VSOR), which is known to mediate Cl? efflux involved in RVD, because another ABC transporter member, CFTR, was shown to suppress VSOR activity. Whole‐cell VSOR currents were largely reduced by overexpression of ABCF2 and markedly enhanced by siRNA‐mediated depletion of ABCF2. Thus, the present study indicates that ACTN4 acts as an enhancer of RVD, whereas ABCF2 acts as a suppressor of VSOR and RVD, and suggests that a swelling‐induced interaction between ACTN4 and ABCF2 prevents ABCF2 from suppressing VSOR activity in the human epithelial cells. J. Cell. Physiol. 227: 3498–3510, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
76.
Cell movement is driven by the coordinated regulation of cytoskeletal reorganization through Rho GTPases downstream of integrin and growth-factor receptor signaling. We have reported that mDia, a target protein of Rho, interacts with Src and DIP. Here we show that DIP binds to p190RhoGAP and Vav2, and that DIP is phosphorylated by Src and mediates the phosphorylation of p190RhoGAP and Vav2 upon EGF stimulation. When endogenous DIP was inhibited by expressing dominant-negative mutants of DIP or siRNA, phosphorylation of p190RhoGAP and Vav2 upon EGF stimulation was diminished, and EGF-induced actin organization, distribution of p190RhoGAP and Vav2, and cell movement were affected. Therefore, DIP seems to transfer the complex of the three proteins from cytosol to beneath the membrane, and the three proteins, in turn, can be phosphorylated by Src. DIP inactivated Rho and activated Rac following EGF stimulation in the membrane fraction. Thus, DIP acts as a regulatory molecule causing Src kinase-dependent feedback modulation of Rho GTPases downstream of Rho-mDia upon EGF stimulation, and plays an important role in cell motility.  相似文献   
77.
78.
To date, a large number of sequences of protein kinases that belong to the sucrose nonfermenting1-related protein kinase2 (SnRK2) family are found in databases. However, only limited numbers of the family members have been characterized and implicated in abscisic acid (ABA) and hyperosmotic stress signaling. We identified 10 SnRK2 protein kinases encoded by the rice (Oryza sativa) genome. Each of the 10 members was expressed in cultured cell protoplasts, and its regulation was analyzed. Here, we demonstrate that all family members are activated by hyperosmotic stress and that three of them are also activated by ABA. Surprisingly, there were no members that were activated only by ABA. The activation was found to be regulated via phosphorylation. In addition to the functional distinction with respect to ABA regulation, dependence of activation on the hyperosmotic strength was different among the members. We show that the relatively diverged C-terminal domain is mainly responsible for this functional distinction, although the kinase domain also contributes to these differences. The results indicated that the SnRK2 protein kinase family has evolved specifically for hyperosmotic stress signaling and that individual members have acquired distinct regulatory properties, including ABA responsiveness by modifying the C-terminal domain.  相似文献   
79.
The major histocompatibility complex (MHC) of the domestic cat has been poorly characterized to date, primarily because of numerous difficulties in the preparation of allotypic sera. We present here a comparative analysis of class I and class II genes in domestic cat populations using molecular probes of the MHC from man and mouse. The cat possesses a minimum of 20 class I loci and 5 class II genes per haploid genome. Class I genes of the domestic cat expressed limited restriction fragment length polymorphism. The average percent difference of the size of DNA fragments between individual cats was 9.0 %, a value five times lower than the value for mice, but comparable to the human DNA polymorphism level. Class I and class II genes were both genetically mapped to feline chromosome B2 using a panel of rodent x cat somatic cell hybrids. Since feline chromosome B2 is syntenically homologous to human chromosome 6 and mouse chromosome 17, these results affirm the linkage conservation of the MHC-containing linkage group in the three mammalian orders.  相似文献   
80.
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号