首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2500篇
  免费   223篇
  国内免费   205篇
  2023年   26篇
  2022年   71篇
  2021年   120篇
  2020年   84篇
  2019年   94篇
  2018年   107篇
  2017年   76篇
  2016年   132篇
  2015年   174篇
  2014年   164篇
  2013年   192篇
  2012年   238篇
  2011年   215篇
  2010年   119篇
  2009年   86篇
  2008年   129篇
  2007年   117篇
  2006年   95篇
  2005年   93篇
  2004年   79篇
  2003年   66篇
  2002年   61篇
  2001年   50篇
  2000年   41篇
  1999年   44篇
  1998年   31篇
  1997年   33篇
  1996年   30篇
  1995年   26篇
  1994年   16篇
  1993年   13篇
  1992年   16篇
  1991年   10篇
  1990年   15篇
  1989年   7篇
  1988年   7篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有2928条查询结果,搜索用时 31 毫秒
151.
Zhang YX  Li J  Guo XK  Wu C  Bi B  Ren SX  Wu CF  Zhao GP 《Cell research》2004,14(3):208-216
Comparative genomic analysis of the coding sequences (CDSs) of Leptospira interrogans revealed a pair of closely linked genes homologous to the vapBC loci of many other bacteria with respect to both deduced amino acid sequencesand operon organizations. Expression of single vapC gene in Escherichia coli resulted in inhibition of bacterial growth,whereas co-expression of vapBC restored the growth effectively. This phenotype is typical for three other character-ized toxin-antitoxin systems of bacteria, i.e., mazEF[1], reIBE[2] and chplK[3]. The VapC proteins of bacteria and a thermophilic archeae, Solfolobus tokodaii, form a structurally distinguished group of toxin different from the other known toxins of bacteria. Phylogenetic analysis of both toxins and antitoxins of all categories indicated that althought oxins were evolved from divergent sources and may or may not follow their speciation paths (as indicated by their 16s RNA seouences), co-evolution with their antitoxins was obvious.  相似文献   
152.
Rho-family GTPases Cdc42p and Rho1p play critical roles in the budding process of the yeast Saccharomyces cerevisiae. However, it is not clear how the functions of these GTPases are coordinated temporally and spatially during this process. Based on its ability to suppress cdc42-Ts mutants when overexpressed, a novel gene PXL1 was identified. Pxl1p resembles mammalian paxillin, which is involved in integrating various signaling events at focal adhesion. Both proteins share amino acid sequence homology and structural organization. When expressed in yeast, chicken paxillin localizes to the sites of polarized growth as Pxl1p does. In addition, the LIM domains in both proteins are the primary determinant for targeting the proteins to the cortical sites in their native cells. These data strongly suggest that Pxl1p is the "ancient paxillin" in yeast. Deletion of PXL1 does not produce any obvious phenotype. However, Pxl1p directly binds to Rho1p-GDP in vitro, and inhibits the growth of rho1-2 and rho1-3 mutants in a dosage-dependent manner. The opposite effects of overexpressed Pxl1p on cdc42 and rho1 mutants suggest that the functions of Cdc42p and Rho1p may be coordinately regulated during budding and that Pxl1p may be involved in this coordination.  相似文献   
153.
Cholecystokinin (CCK) is a major regulator of pancreatic acinar cells and was shown previously to be capable of inducing cytoskeletal changes in these cells. In the present study, using NIH3T3 cells stably transfected with CCK-A receptors as a model cell, we demonstrate that CCK can induce actin stress fibers through a G13- and RhoA-dependent mechanism. CCK induced stress fibers within minutes similar to those induced by lysophosphatidic acid (LPA), the active component of serum. The effects of CCK were mimicked by active RhoV14 and blocked by dominant-negative RhoN19, Clostridium botulinum C3 transferase, and the Rho-kinase inhibitor Y-27632. CCK rapidly induced active Rho in cells as shown with a pull-down assay using the Rho binding domain of rhotekin and by a serum response element (SRE)-luciferase reporter assay. To evaluate the G protein mediating the action of CCK, cells were transfected with active -subunits; G13 and G12 but not Gq induced stress fibers and in some cases cell rounding. A p115 Rho guanine nucleotide exchange factor (GEF) regulator of G protein signaling (RGS) domain known to interact with G12/13 inhibited active 12/13-and CCK-induced stress fibers, whereas RGS2 and RGS4, which are known to inhibit Gq, had no effect. Cotransfection with plasmids coding for the G protein -subunit carboxy-terminal peptide from 13 and, to a lesser extent 12, also inhibited the effect of CCK, whereas the peptide from q did not. These results show that in NIH3T3 cells bearing CCK-A receptors, CCK activates Rho primarily through G13, leading to rearrangement of the actin cytoskeleton. actin; cholecystokinin; Rho; Rho-kinase; stress fibers  相似文献   
154.
Septins are a conserved eukaryotic family of GTP-binding filament-forming proteins with functions in cytokinesis and other processes. In the budding yeast Saccharomyces cerevisiae, septins initially localize to the presumptive bud site and then to the cortex of the mother-bud neck as an hourglass structure. During cytokinesis, the septin hourglass splits and single septin rings partition with each of the resulting cells. Septins are thought to function in diverse processes in S. cerevisiae, mainly by acting as a scaffold to direct the neck localization of septin-associated proteins.  相似文献   
155.
Abstract.— Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans , we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0–3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral , suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans . The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.  相似文献   
156.
157.
Transmission electron microscopy and immunogold labeling were used to determine how PKC-betaII is localized at stages in the cell cycle of the human glioma cell line U-373MG. Results show that immunogold particles in both dimethylsulfoxide (DMSO) and calphostin C (0.5 microM)-treated cells were mainly located in the cytoplasm. The concentration of gold particles in the nucleus was relatively small and constant throughout the cell cycle of both DMSO and calphostin C treated cells. Micrographs revealed changes in PKC-betaII during the cell cycle. The concentration of gold particles in the DMSO-treated cells was constant until 8 h. Subsequently, cytoplasmic PKC-betaII oscillated with an increased at 10 h, a rapid decrease at 12 h, and a rise at 14 h. The concentration of the gold particles then gradually decreased. In contrast, immunogold labeling in calphostin C-treated cells increased gradually up to 10 h. Subsequently, the pattern of PKC-betaII labeling in calphostin C-treated cells recapitulated those of control cells as seen by the rapid decline of PKC-betaII labeling at 12 h and its re-accumulation at 14 h. Additionally, there was a rapid increase at 20 h. Western blots of PKC-betaII showed constant PKC-betaII immunoreactivity throughout the cell cycle. In comparison to Western blots, in-situ immunogold labeling revealed changes in PKC-II immunoreactivity at 10 h and 14 h. This technique may represent intracellular immunoreactivity of PKC-betaII. The results from the immunogold labeling technique suggest that binding of calphostin C to the regulatory domain of PKC-betaII provokes a conformation change in PKC-betaII, preventing its activation and degradation.  相似文献   
158.
Biglycan is a Class I Small Leucine Rich Proteoglycans (SLRP) that is localized on human chromosome Xq28-ter. The conserved nature of its intron-exon structure and protein coding sequence compared to decorin (another Class I SLRP) indicates the two genes may have arisen from gene duplication. Biglycan contains two chondroitin sulfate glycosaminoglycan (GAG) chains attached near its NH2 terminus making it different from decorin that has only one GAG chain. To determine the functions of biglycan in vivo, transgenic mice were developed that were deficient in the production of the protein (knockout). These mice acquire diminished bone mass progressively with age. Double tetracycline-calcein labeling revealed that the biglycan deficient mice are defective in their capacity to form bone. Based on this observation, we tested the hypothesis that the osteoporosis-like phenotype is due to defects in cells critical to the process of bone formation. Our data shows that biglycan deficient mice have diminished capacity to produce marrow stromal cells, the bone cell precursors, and that this deficiency increases with age. The cells also have reduced response to tranforming growth factor- (TGF-), reduced collagen synthesis and relatively more apoptosis than cells from normal littermates. In addition, calvaria cells isolated from biglycan deficient mice have reduced expression of late differentiation markers such as bone sialoprotein and osteocalcin and diminished ability to accumulate calcium judged by alizerin red staining. We propose that any one of these defects in osteogenic cells alone, or in combination, could contribute to the osteoporosis observed in the biglycan knockout mice. Other data suggests there is a functional relationship between biglycan and bone morphogenic protein-2/4 (BMP 2/4) action in controlling skeletal cell differentiation. In order to test the hypothesis that functional compensation can occur between SLRPs, we created mice deficient in biglycan and decorin. Decorin deficient mice have normal bone mass while the double biglycan/decorin knockout mice have more severe osteopenia than the single biglycan indicating redundancy in SLRP function in bone tissue. To further determine whether compensation could occur between different classes of SLRPs, mice were generated that are deficient in both biglycan (class I) and fibromodulin, a class II SLRP highly expressed in mineralizing tissue. These doubly deficient mice had an impaired gait, ectopic calcification of tendons and premature osteoarthritis. Transmission electron microscopy analysis showed that like the decorin and biglycan knockouts, they have severely disturbed collagen fibril structures. Biomechanical analysis of the affected tendons showed they were weaker compared to control animals leading to the conclusion that instability of the joints could be the primary cause of all the skeletal defects observed in the fibromodulin/biglycan knockout mice. These studies present important new animal models for musculoskeletal diseases and provide the opportunity to characterize the network of signals that control tissue integrity and function through SLRP activity. Published in 2003.  相似文献   
159.
Bi GQ 《Biological cybernetics》2002,87(5-6):319-332
Recent experimental results on spike-timing-dependent plasticity (STDP) and heterosynaptic interaction in various systems have revealed new temporal and spatial properties of activity-dependent synaptic plasticity. These results challenge the conventional understanding of Hebb's rule and raise intriguing questions regarding the fundamental processes of cellular signaling. In this article, I review these new findings that lead to formulation of a new set of cellular rules. Emphasis is on evaluating potential molecular and cellular mechanisms that may underlie the spike-timing window of STDP and different patterns of heterosynaptic modifications. I also highlight several unresolved issues, and suggest future lines of research.  相似文献   
160.
We analyzed regulation of the prosurvival Bcl-2 homologue A1, following T-cell receptor (TCR) or cytokine receptor engagement. Activation of CD4(+) or CD8(+) T cells by antigenic peptides induced an early but transient IL-2-independent expression of A1 and Bcl-xl mRNA and proteins, whereas expression of Bcl-2 was delayed and required IL-2. Cytokines such as IL-2, IL-4, IL-7 or IL-15 prevented apoptosis of activated T cells that effect being associated with the maintenance of Bcl-2, but not of A1 expression. However, restimulation of activated or posteffector T cells with antigenic peptide strongly upregulated A1 mRNA and maintained A1 protein expression. IL-4, IL-7 or IL-15 also prevented cell death of naive T cells. In those cells, cytokines upregulated Bcl-2, but not A1 expression. Therefore, in naive, activated and posteffector T cells, expression of A1 is dependent on TCR but not on cytokine receptor engagement, indicating that A1 is differently regulated from Bcl-xl and Bcl-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号