首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19315篇
  免费   1448篇
  国内免费   1330篇
  2024年   39篇
  2023年   254篇
  2022年   568篇
  2021年   1058篇
  2020年   712篇
  2019年   890篇
  2018年   802篇
  2017年   615篇
  2016年   883篇
  2015年   1256篇
  2014年   1478篇
  2013年   1508篇
  2012年   1759篇
  2011年   1531篇
  2010年   953篇
  2009年   816篇
  2008年   945篇
  2007年   765篇
  2006年   728篇
  2005年   573篇
  2004年   527篇
  2003年   470篇
  2002年   407篇
  2001年   372篇
  2000年   341篇
  1999年   313篇
  1998年   204篇
  1997年   188篇
  1996年   174篇
  1995年   152篇
  1994年   115篇
  1993年   105篇
  1992年   132篇
  1991年   110篇
  1990年   96篇
  1989年   58篇
  1988年   46篇
  1987年   49篇
  1986年   25篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
SERTA domain-containing protein 1 (Sertad1) is upregulated in the models of DNA damage and Alzheimer’s disease, contributing to neuronal death. However, the role and mechanism of Sertad1 in ischemic/hypoxic neurological injury remain unclear. In the present study, our results showed that the expression of Sertad1 was upregulated in a mouse middle cerebral artery occlusion and reperfusion model and in HT22 cells after oxygen-glucose deprivation/reoxygenation (OGD/R). Sertad1 knockdown significantly ameliorated ischemia-induced brain infarct volume, neurological deficits and neuronal apoptosis. In addition, it significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Sertad1 knockdown significantly inhibited the ischemic/hypoxic-induced expression of p-Rb, B-Myb, and Bim in vivo and in vitro. However, Sertad1 overexpression significantly exacerbated the OGD/R-induced inhibition of cell viability and apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. In further studies, we demonstrated that Sertad1 directly binds to CDK4 and the CDK4 inhibitor ON123300 restores the effects of Sertad1 overexpression on OGD/R-induced apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. These results suggested that Sertad1 contributed to ischemic/hypoxic neurological injury by activating the CDK4/p-Rb pathway.  相似文献   
993.
994.
N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 °C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N- bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains—including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site—was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.  相似文献   
995.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a serious threat to the swine industry worldwide. Exostosin glycosyltransferase 1 (EXT1), an enzyme involved in the biosynthesis of heparin sulfate, has also been reported to be a host factor essential for a wide variety of pathogens. However, the role of EXT1 in PRRSV infection remains uncharted. Here, we identified that PRRSV infection caused an increase of EXT1 expression. EXT1 knockdown promoted virus infection, whereas its overexpression inhibited virus infection, suggesting an inhibitory function of EXT1 to PRRSV infection. We found that EXT1 had no effects on the attachment, internalization, or release of PRRSV but did restrict viral RNA replication. EXT1 was determined to interact with viral nonstructural protein 3 (nsp3) and nsp5 via its N-terminal cytoplasmic tail and to enhance K48-linked polyubiquitination of these two nsps to promote their degradation. Furthermore, the C-terminal glycosyltransferase activity domain of EXT1 was necessary for nsp3 and nsp5 degradation. We also found that EXT2, a EXT1 homolog, interacted with EXT1 and inhibited PRRSV infection. Similarly, EXT1 effectively restricted porcine epidemic diarrhea virus and porcine enteric alphacoronavirus infection in Vero cells. Taken together, this study reveals that EXT1 may serve as a broad-spectrum host restriction factor and suggests a molecular basis for the potential development of therapeutics against PRRSV infection.  相似文献   
996.
997.
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circDVL1 to be reduced in the serums and tissues from ccRCC patients, and to negatively correlate with ccRCC malignant features. Overexpression of circDVL1 inhibits proliferation, induces G1/S arrest, triggers apoptosis, and reduces migration and invasion in different ccRCC cells in vitro. Correspondingly, circDVL1 overexpression suppresses ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circDVL1 serves as a sponge for oncogenic miR-412-3p, thereby preventing miR-412-3p-mediated repression of its target protocadherin 7 (PCDH7) in ccRCC cells. Collectively, our results demonstrate that circDVL1 exerts tumor-suppressive function during ccRCC progression through circDVL1/miR-412-3p/PCDH7 axis, and suggest that circDVL1 could be a novel diagnostic and prognositc marker and therapeutic target for ccRCC.  相似文献   
998.
999.
The rate of fat graft survival is a critical aspect of successful surgery and has been a matter of concern for over 20 years.Owing to their anti-inflammatory ef...  相似文献   
1000.
The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号