首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57908篇
  免费   4596篇
  国内免费   4510篇
  67014篇
  2024年   142篇
  2023年   791篇
  2022年   1855篇
  2021年   3046篇
  2020年   2082篇
  2019年   2505篇
  2018年   2347篇
  2017年   1810篇
  2016年   2546篇
  2015年   3630篇
  2014年   4382篇
  2013年   4441篇
  2012年   5293篇
  2011年   4766篇
  2010年   2884篇
  2009年   2599篇
  2008年   2940篇
  2007年   2640篇
  2006年   2266篇
  2005年   1887篇
  2004年   1512篇
  2003年   1420篇
  2002年   1072篇
  2001年   910篇
  2000年   889篇
  1999年   811篇
  1998年   499篇
  1997年   454篇
  1996年   478篇
  1995年   422篇
  1994年   413篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Curcumin, a major pigment of turmeric, is a natural antioxidant possessing a variety of pharmacological activities and therapeutic properties. But its mechanisms are unknown. In our previous study, we found that a 2-h exposure to curcumin induced DNA damage to both the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA) in HepG2 cells and that mtDNA damage was more extensive than nDNA damage. Therefore, experiments were initiated to evaluate the role of mtDNA damage in curcumin-induced apoptosis. The results demonstrated that HepG2 cells challenged with curcumin for 1 h showed a transient elevation of the mitochondrial membrane potential (DeltaPsim), followed by cytochrome c release into the cytosol and disruption of DeltaPsim after 6 h exposure to curcumin. Apoptosis was detected by Hoechst 33342 and annexin V/PI assay after 10 h treatment. Interestingly, the expression of Bcl-2 remained unchanged. A resistance to apoptosis for the corresponding rho0 counterparts confirmed a critical dependency for mitochondria during the induction of apoptosis in HepG2 cells mediated by curcumin. The effects of PEG-SOD in protecting against curcumin-induced cytotoxicity suggest that curcumin-induced cytotoxicity is directly dependent on superoxide anion O2- production. These data suggest that mitochondrial hyperpolarization is a prerequisite for curcumin-induced apoptosis and that mtDNA damage is the initial event triggering a chain of events leading to apoptosis in HepG2 cells.  相似文献   
992.
We analyzed the in vivo tumor regression activity of high molecular mass poly-gamma-glutamate (gamma-PGA) from Bacillus subtilis sups. chungkookjang. C57BL/6 mice were orally administered 10-, 100-, or 2000-kDa gamma-PGA or beta-glucan (positive control), and antitumor immunity was examined. Our results revealed higher levels of NK cell-mediated cytotoxicity and IFN-gamma secretion in mice treated with higher molecular mass gamma-PGA (2000 kDa) vs those treated with lower molecular mass gamma-PGA (10 or 100 kDa) or beta-glucan. We then examined the effect of oral administration of 10- or 2000-kDa gamma-PGA on protection against B16 tumor challenge in C57BL/6 mice. Mice receiving high molecular mass gamma-PGA (2000 kDa) showed significantly smaller tumor sizes following challenge with the MHC class I-down-regulated tumor cell lines, B16 and TC-1 P3 (A15), but not with TC-1 cells, which have normal MHC class I expression. Lastly, we found that gamma-PGA-induced antitumor effect was decreased by in vivo depletion of NK cells using mAb PK136 or anti-asialo GM1 Ab, and that was completely blocked in NK cell-deficient B6 beige mice or IFN-gamma knockout mice. Taken together, we demonstrated that oral administration of high molecular mass gamma-PGA (2000 kDa) generated significant NK cell-mediated antitumor activity in mice bearing MHC class I-deficient tumors.  相似文献   
993.
The intestinal absorption characteristics of anthraquinones emodin and chrysophanol were observed by measuring the intracellular accumulation across Caco-2 cells by the reverse-phase high performance liquid chromatography. The intracellular accumulation of chrysophanol was much greater than that of emodin, the maximum absorption of emodin and chrysophanol being 414.02+/-15.28 and 105.56+/-11.57 nmol/l x mg x protein, respectively. The absorption of each anthraquinone was significantly lower at 4 degrees C than that of 37 degrees C. The effects of the transport inhibitors, verapamil, cyclosporine and phloridzin, on the intracellular accumulation were also examined. Verapamil and cyclosporine increased the absorption of emodin and chrysophanol, while phloridzin inhibited their absorption, all in a dose-dependent manner. These results suggest that the absorption characteristics of emodin and chrysophanol were closely related to their special structure with the hydroxy groups. It is also likely that a specific transport system mediated the intracellular accumulation of emodin and chrysophanol across the Caco-2 cells.  相似文献   
994.
Lee DF  Kuo HP  Chen CT  Hsu JM  Chou CK  Wei Y  Sun HL  Li LY  Ping B  Huang WC  He X  Hung JY  Lai CC  Ding Q  Su JL  Yang JY  Sahin AA  Hortobagyi GN  Tsai FJ  Tsai CH  Hung MC 《Cell》2007,130(3):440-455
TNFalpha has recently emerged as a regulator linking inflammation to cancer pathogenesis, but the detailed cellular and molecular mechanisms underlying this link remain to be elucidated. The tuberous sclerosis 1 (TSC1)/TSC2 tumor suppressor complex serves as a repressor of the mTOR pathway, and disruption of TSC1/TSC2 complex function may contribute to tumorigenesis. Here we show that IKKbeta, a major downstream kinase in the TNFalpha signaling pathway, physically interacts with and phosphorylates TSC1 at Ser487 and Ser511, resulting in suppression of TSC1. The IKKbeta-mediated TSC1 suppression activates the mTOR pathway, enhances angiogenesis, and results in tumor development. We further find that expression of activated IKKbeta is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. Our findings identify a pathway that is critical for inflammation-mediated tumor angiogenesis and may provide a target for clinical intervention in human cancer.  相似文献   
995.
Yang L  Park J  Graveley BR 《Molecular cell》2007,27(6):861-862
A new study in this issue of Molecular Cell (Pleiss et al., 2007b) shows that changes in the environment rapidly alter the splicing efficiency of specific pre-mRNAs in yeast.  相似文献   
996.
Law CJ  Yang Q  Soudant C  Maloney PC  Wang DN 《Biochemistry》2007,46(43):12190-12197
Secondary active transport of substrate across the cell membrane is crucial to many cellular and physiological processes. The crystal structure of one member of the secondary active transporter family, the sn-glycerol-3-phosphate (G3P) transporter (GlpT) of the inner membrane of Escherichia coli, suggests a mechanism for substrate translocation across the membrane that involves a rocker-switch-type movement of the protein. This rocker-switch mechanism makes two specific predictions with respect to kinetic behavior: the transport rate increases with the temperature, whereas the binding affinity of the transporter to a substrate is temperature-independent. In this work, we directly tested these two predictions by transport kinetics and substrate-binding experiments, integrating the data on this single system into a coherent set of observations. The transport kinetics of the physiologically relevant G3P-phosphate antiport reaction were characterized at different temperatures using both E. coli whole cells and GlpT reconstituted into proteoliposomes. Substrate-binding affinity of the transporter was measured using tryptophan fluorescence quenching in detergent solution. Indeed, the substrate transport velocity of GlpT increased dramatically with temperature. In contrast, neither the apparent Michaelis constant (Km) nor the apparent substrate-binding dissociation constant (Kd) showed temperature dependence. Moreover, GlpT-catalyzed G3P translocation exhibited a completely linear Arrhenius function with an activation energy of 35.2 kJ mol-1 for the transporter reconstituted into proteoliposomes, suggesting that the substrate-loaded transporter is delicately poised between the inward- and outward-facing conformations. When these results are taken together, they are in agreement with a rocker-switch mechanism for GlpT.  相似文献   
997.
Glypican-1 (GPC1), a member of the mammalian glypican family of heparan sulfate proteoglycans, is highly expressed in glioma blood vessel endothelial cells (ECs). In this study, we investigated the role of GPC1 in EC replication by manipulating GPC1 expression in cultured mouse brain ECs. Moderate GPC1 overexpression stimulates EC growth, but proliferation is significantly suppressed when GPC1 expression is either knocked down or the molecule is highly overexpressed. Flow cytometric and biochemical analyses show that high or low expression of GPC1 causes cell cycle arrest at mitosis or the G2 phase of the cell cycle, accompanied by endoreduplication and consequently polyploidization. We further show that GPC1 inhibits the anaphase-promoting complex/cyclosome (APC/C)-mediated degradation of mitotic cyclins and securin. High levels of GPC1 induce metaphase arrest and centrosome overproduction, alterations that are mimicked by overexpression of cyclin B1 and cyclin A, respectively. These observations suggest that GPC1 regulates EC cell cycle progression at least partially by modulating APC/C-mediated degradation of mitotic cyclins and securin.  相似文献   
998.
Yao S  Xie L  Qian M  Yang H  Zhou L  Zhou Q  Yan F  Gou L  Wei Y  Zhao X  Mo X 《FEBS letters》2008,582(15):2325-2332
Recent studies show that human Pnas4 might be tumor associated, while its function remains unknown. Here, we investigate the developmental function of Pnas4 using zebrafish as a model system. Knocking down Pnas4 causes gastrulation defects with a shorter and broader axis, as well as a posteriorly mis-positioned prechordal plate, due to the defective convergence and extension movement. Conversely, over-expression of Pnas4 mRNA leads to an elongated body axis. We further demonstrate that Pnas4 is required cell-autonomously for dorsal convergence but not for anterior migration. In addition, genetic interaction assays indicate that Pnas4 might act in parallel with non-canonical Wnt signal in the regulation of cell movement. Our data suggest that Pnas4 is a key regulator of cell movement during gastrulation.  相似文献   
999.
Obesity increases the risk for metabolic and cardiovascular disease, and adipose tissue plays a central role in this process. Ceramide, the key intermediate of sphingolipid metabolism, also contributes to obesity-related disorders. We show that a high fat diet increased ceramide levels in the adipose tissues and plasma in C57BL/6J mice via a mechanism that involves an increase in gene expression of enzymes mediating ceramide generation through the de novo pathway (e.g. serine palmitoyltransferase) and via the hydrolysis of sphingomyelin (acid sphingomyelinase and neutral sphingomyelinase). Although the induction of total ceramide in response to the high fat diet was modest, dramatic increases were observed for C16, C18, and C18:1 ceramides. Next, we investigated the relationship of ceramide to plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of plasminogen activation and another key player in obesity. PAI-1 is consistently elevated in obesity and thought to contribute to increased artherothrombotic events and more recently to obesity-mediated insulin resistance. Interestingly, the changes in ceramide were attenuated in mice lacking PAI-1. Mechanistically, mice lacking PAI-1 were protected from diet-induced increase in serine palmitoyltransferase, acid sphingomyelinase, and neutral sphingomyelinase mRNA, providing a mechanistic link for decreased ceramide in PAI-1-/- mice. The decreases in plasma free fatty acids and adipose tumor necrosis factor-alpha in PAI-1-/- mice may have additionally contributed indirectly to improvements in ceramide profile in these mice. This study has identified a novel link between sphingolipid metabolism and PAI-1 and also suggests that ceramide may be an intermediary molecule linking elevated PAI-1 to insulin resistance.  相似文献   
1000.
To speed up the conversion of rice straw into feeds in a low-temperature region, a start culture used for ensiling rice straw at low temperature was selected by continuous enrichment cultivation. During the selection, the microbial source for enrichment was rice straw and soil from two places in Northeast China. Lab-scale rice straw fermentation at 10 degrees C verified, compared with the commercial inocculant, that the selected start culture lowered the pH of the fermented rice straw more rapidly and produced more lactic acid. The results from denatured gradient gel eletrophoresis showed that the selected start culture could colonize into the rice straw fermentation system. To analyze the composition of the culture, a 16S clone library was constructed. Sequencing results showed that the culture mainly consisted of two bacterial species. One (A) belonged to Lactobacillus and another (B) belonged to Leuconostoc. To make clear the roles of composition microbes in the fermented system, quantitative PCR was used. For species A, the DNA mass increased continuously until sixteen days of the fermentation, which occupied 65%. For species B, the DNA mass amounted to 5.5% at six days of the fermentation, which was the maximum relative value during the fermentation. To the authors' best knowledge, this is the first report on ensiling rice straw with a selected starter at low temperature and investigation of the fermented characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号