首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   77篇
  国内免费   3篇
  2023年   2篇
  2022年   10篇
  2021年   21篇
  2020年   6篇
  2019年   12篇
  2018年   16篇
  2017年   14篇
  2016年   26篇
  2015年   34篇
  2014年   42篇
  2013年   55篇
  2012年   75篇
  2011年   69篇
  2010年   39篇
  2009年   37篇
  2008年   34篇
  2007年   32篇
  2006年   37篇
  2005年   57篇
  2004年   28篇
  2003年   29篇
  2002年   28篇
  2001年   20篇
  2000年   16篇
  1999年   17篇
  1998年   11篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1992年   14篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   12篇
  1985年   11篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1979年   2篇
  1977年   6篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有887条查询结果,搜索用时 218 毫秒
61.
Endospore forming bacteria were collected from root samples of 35 genera of bedding plants growing in established commercial landscape beds in Central Florida. One hundred and twenty-nine bacterial strains associated with 14 species were identified using fatty acid analysis (Microbial Identification System, MIDI). All strains were evaluated for in vitro inhibition of damping off disease caused by the fungus Rhizoctonia solani. The strongest inhibition of Rhizoctonia by soluble exudates in cocultivation was observed with strains belonging to six species: B. cereus, B. pumilus, B. thuringiensis, L. sphaericus, B. amyloliquefaciens, and B. subtilis. Most strains that inhibited Rhizoctonia growth in cocultivation also inhibited growth via volatile compounds. All 129 strains were evaluated for ability to protect impatiens plants from subsequent challenge infection by Rhizoctonia solani. Certain strains of endospore forming bacteria also enhanced plant growth. It is apparent from this study that the Bacillus community associated with bedding plants in established planting beds produce soluble antifungal compounds, volatile antifungal compounds, and enhance plant growth. In developing biological control, it may be a more practical approach to promote or enhance a natural, multifaceted community of Bacillus strains within our planting beds.  相似文献   
62.
Yuen CT  Zhou Y  Wang QZ  Hou JF  Bristow A  Wang JZ 《Biologicals》2011,39(6):396-403
N-Glycosylation of many glycoprotein drugs is important for biological activity and should therefore be the target of specific and quantitative analytical methods. In this study, we focus on the two N-glycan mapping approaches that are used in pharmacopoeial monograph to analyse N-glycans released from fifteen preparations of recombinant human erythropoietin supplied by ten Chinese manufacturers. Underivatised N-glycans were analysed by high performance anion-exchange chromatography with pulsed amperometric detection and fluorophore-labelled N-glycans were analysed by weak anion-exchange and normal-phase high performance liquid chromatography. N-glycans were also analysed by matrix assisted laser desorption ionisation mass spectrometry. The release of N-glycans by PNGase F was shown to be consistent. Z number, a mathematical expression of the total negatively charged N-glycans composition has provided a convenient way to summarise the complex dataset and it might be suitable for product consistency monitoring. However, this Z number reduces the information of individual acidic N-glycan structure and is also found to be method dependent. Therefore, its use requires clear specification and validation. In this study, we only found weak but positive correlation between the Z number and its bioactivity. Wide range of N-glycans yields were obtained from the fifteen preparations but the significance of their differences is unclear.  相似文献   
63.
Alzheimer's disease (AD) is an aging‐related progressive neurodegenerative disorder. Previous studies suggested that various soluble Aβ species are neurotoxic and able to activate apoptosis and autophagy, the type I and type II programmed cell death, respectively. However, the sequential and functional relationships between these two cellular events remain elusive. Here we report that low molecular weight Aβ triggered cleavage of caspase 3 and poly (ADP‐ribose) polymerase to cause neuronal apoptosis in rat cortical neurons. On the other hand, Aβ activated autophagy by inducing autophagic vesicle formation and autophagy related gene 12 (ATG12), and up‐regulated the lysoso‐mal machinery for the degradation of autophagosomes. Moreover, we demonstrated that activation of autophagy by Aβ preceded that of apoptosis, with death associated protein kinase phosphorylation as the potential molecular link. More importantly, under Aβ toxicity, neurons exhibiting high level of autophagosome formation were absent of apoptotic features, and inhibition of autophagy by 3‐methylade‐nine advanced neuronal apoptosis, suggesting that autophagy can protect neurons from Aβ‐induced apoptosis.  相似文献   
64.
West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins and it encapsidates the viral RNA to form the nucleocapsid. It is known to be a multifunctional protein involved in assembly and apoptosis. WNV C protein was previously found to be phosphorylated in infected cells and bioinformatic analysis revealed 5 putative phosphorylation sites at serine 26, 36, 83, 99 and threonine 100. Phosphorylation was abolished through mutagenesis of these putative phosphorylation sites to investigate how phosphorylation could affect the processes of nucleocapsid assembly like RNA binding, oligomerization and cellular localization. It was found that phosphorylation attenuated its RNA binding activity. Although oligomerization was not inhibited by mutagenesis of the putative phosphorylation sites, the rate of dimerization and oligomerization was affected. Hypophosphorylation of C protein reduced its nuclear localization efficiency and hence enhanced cytoplasmic localization. This study also revealed that although WNV C is phosphorylated in infected cells, the relative level of phosphorylation is reduced over the course of an infection to promote RNA binding and nucleocapsid formation in the cytoplasm. This is the first report to describe how dynamic phosphorylation of WNV C protein modulates the processes involved in nucleocapsid assembly.  相似文献   
65.
66.
67.
Rarefaction of the renal microvasculature correlates with declining kidney function. However, current technologies commonly used for its evaluation are limited by their reliance on endothelial cell antigen expression and assessment in two dimensions. We set out to establish a widely applicable and unbiased optical sectioning method to enable three dimensional imaging and reconstruction of the renal microvessels based on their luminal filling. The kidneys of subtotally nephrectomized (SNx) rats and their sham-operated counterparts were subjected to either routine two-dimensional immunohistochemistry or the novel technique of fluorescent microangiography (FMA). The latter was achieved by perfusion of the kidney with an agarose suspension of fluorescent polystyrene microspheres followed by optical sectioning of 200 μm thick cross-sections using a confocal microscope. The fluorescent microangiography method enabled the three-dimensional reconstruction of virtual microvascular casts and confirmed a reduction in both glomerular and peritubular capillary density in the kidneys of SNx rats, despite an overall increase in glomerular volume. FMA is an uncomplicated technique for evaluating the renal microvasculature that circumvents many of the limitations imposed by conventional analysis of two-dimensional tissue sections.  相似文献   
68.
69.
70.
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, L-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号