全文获取类型
收费全文 | 11387篇 |
免费 | 915篇 |
国内免费 | 769篇 |
专业分类
13071篇 |
出版年
2024年 | 20篇 |
2023年 | 213篇 |
2022年 | 401篇 |
2021年 | 634篇 |
2020年 | 397篇 |
2019年 | 517篇 |
2018年 | 536篇 |
2017年 | 341篇 |
2016年 | 509篇 |
2015年 | 714篇 |
2014年 | 794篇 |
2013年 | 919篇 |
2012年 | 1072篇 |
2011年 | 930篇 |
2010年 | 573篇 |
2009年 | 499篇 |
2008年 | 533篇 |
2007年 | 493篇 |
2006年 | 431篇 |
2005年 | 363篇 |
2004年 | 304篇 |
2003年 | 229篇 |
2002年 | 189篇 |
2001年 | 203篇 |
2000年 | 170篇 |
1999年 | 174篇 |
1998年 | 101篇 |
1997年 | 126篇 |
1996年 | 106篇 |
1995年 | 87篇 |
1994年 | 91篇 |
1993年 | 48篇 |
1992年 | 75篇 |
1991年 | 55篇 |
1990年 | 44篇 |
1989年 | 46篇 |
1988年 | 38篇 |
1987年 | 27篇 |
1986年 | 19篇 |
1985年 | 22篇 |
1984年 | 12篇 |
1983年 | 10篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
51.
Tao Fang Wang Heng Wang Ai Fen Peng Qing Feng Luo Zhi Li Liu Rong Ping Zhou Song Gao Yang Zhou Wen Zhao Chen 《Biochemical and biophysical research communications》2013
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management. 相似文献
52.
Martin L. Decaris Claire L. Emson Kelvin Li Michelle Gatmaitan Flora Luo Jerome Cattin Corelle Nakamura William E. Holmes Thomas E. Angel Marion G. Peters Scott M. Turner Marc K. Hellerstein 《PloS one》2015,10(4)
Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR) of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2–0.6% per day (half-lives of 4 months to a year) and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI), exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates. 相似文献
53.
Mark S. Tichenor John M. Keith William M. Jones Joan M. Pierce Jeff Merit Natalie Hawryluk Mark Seierstad James A. Palmer Michael Webb Mark J. Karbarz Sandy J. Wilson Michelle L. Wennerholm Filip Woestenborghs Dominiek Beerens Lin Luo Sean M. Brown Marlies De Boeck Sandra R. Chaplan J. Guy Breitenbucher 《Bioorganic & medicinal chemistry letters》2012,22(24):7357-7362
The structure–activity relationships for a series of heteroaryl urea inhibitors of fatty acid amide hydrolase (FAAH) are described. Members of this class of inhibitors have been shown to inactivate FAAH by covalent modification of an active site serine with subsequent release of an aromatic amine from the urea electrophile. Systematic Ames II testing guided the optimization of urea substituents by defining the structure–mutagenicity relationships for the released aromatic amine metabolites. Potent FAAH inhibitors were identified having heteroaryl amine leaving groups that were non-mutagenic in the Ames II assay. 相似文献
54.
55.
56.
57.
Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. It is reported that iNOS is degraded mainly by the ubiquitin-proteasome pathway in RAW264.7 cells and human embryonic kidney (HEK) 293 cells. In this study, we showed that iNOS was ubiquitinated and degraded dependent on CHIP (COOH terminus of heat shock protein 70-interacting protein), a chaperone-dependent ubiquitin ligase. The results from overexpression and RNAi experiments demonstrated that CHIP decreased the protein level of iNOS, shortened the half-life of iNOS and attenuated the production of NO. Furthermore, CHIP promoted ubiquitination and proteasomal degradation of iNOS by associating with iNOS. These results suggest that CHIP plays an important role in regulation iNOS activity. 相似文献
58.
59.
60.
Sun Y Li T Chen H Zhang K Zheng K Mu Y Yan G Li W Shen J Luo G 《The Journal of biological chemistry》2004,279(36):37235-37240
Glutathione peroxidase (GPX) is one of the most crucial antioxidant enzymes in a variety of organisms. Here we described a new strategy for generating a novel GPX mimic by combination of a phage-displayed random 15-mer peptide library followed by computer-aided rational design and chemical mutation. The novel GPX mimic is a homodimer consisting of a 15-mer selenopeptide with an appropriate catalytic center, a specific binding site for substrates, and high catalytic efficiency. Its steady state kinetics was also studied, and the values of k(cat)/K(m)(GSH) and k(cat)/ K(mH(2)O(2)) were found to be similar to that of native GPX and the highest among the existing GPX mimics. Moreover, the novel GPX mimic was confirmed to have a strong antioxidant ability to inhibit lipid peroxidation by measuring the content of malondialdehyde, cell viability, and lactate dehydrogenase activity. Importantly, the novel GPX mimic can penetrate into the cell membrane because of its small molecular size. These characteristics endue the novel mimic with potential perspective for pharmaceutical applications. 相似文献