首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5534篇
  免费   623篇
  国内免费   654篇
  2024年   19篇
  2023年   51篇
  2022年   113篇
  2021年   275篇
  2020年   231篇
  2019年   282篇
  2018年   258篇
  2017年   201篇
  2016年   260篇
  2015年   353篇
  2014年   394篇
  2013年   430篇
  2012年   528篇
  2011年   476篇
  2010年   321篇
  2009年   289篇
  2008年   289篇
  2007年   300篇
  2006年   250篇
  2005年   214篇
  2004年   208篇
  2003年   226篇
  2002年   159篇
  2001年   134篇
  2000年   94篇
  1999年   79篇
  1998年   86篇
  1997年   42篇
  1996年   38篇
  1995年   19篇
  1994年   16篇
  1993年   14篇
  1992年   30篇
  1991年   18篇
  1990年   28篇
  1989年   22篇
  1988年   8篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1973年   2篇
  1972年   5篇
  1958年   2篇
排序方式: 共有6811条查询结果,搜索用时 530 毫秒
981.
The ICK/KRP family of cyclin‐dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope‐tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA‐ICK1 protein was observed when both the N‐terminal 1–40 sequence was removed and the SCF (SKP1–Cullin1–F‐box complex) function disrupted, suggesting the involvement of both SCF‐dependent and SCF‐independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21–30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N‐terminus or C‐terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP‐ICK11–40 in yeast. These results thus identify a protein‐destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF‐independent mechanism.  相似文献   
982.
Dengue virus (DENV) is still a major threat to human health in most tropical and subtropical countries and regions. In the present study, a multi‐epitope DNA vaccine that encodes 15 immunogenic and conserved HLA‐A*0201‐, HLA‐A*1101‐, HLA‐A*2402‐restricted CTL epitopes from DENV serotype 1 (DENV‐1) was constructed based on the eukaryotic expressing plasmid pcDNATM3.1/mycHis(?) A. Immunization of HLA‐A*0201, HLA‐A*1101 and HLA‐A*2402 transgenic mice with the recombinant plasmid pcDNATM3.1/mycHis(?) A‐DENV‐1‐Meg resulted in significantly greater IFN‐γ‐secreting T‐cell responses against most (14/15) CTL epitopes than occurred in mice immunized with the empty plasmid pcDNATM3.1/mycHis(?) A. Additionally, the epitope‐specific T cells directed to some epitopes secreted not only IFN‐γ but also IL‐6 and/or TNF‐α. Finally, the induced epitope‐specific T cells also efficiently lysed epitope‐pulsed splenocytes and DENV‐1‐infected splenic monocytes. The present study confirms the immunogenicity of multi‐epitope DENV vaccine, suggesting that it may contribute to the development of a universal DENV vaccine.
  相似文献   
983.
Relaxin-3 is a neuropeptide that has roles in stress, memory and appetite regulation. The peptide acts on its cognate receptor RXFP3 to induce coupling to inhibitory G proteins to inhibit adenylyl cyclase and activate MAP-kinases such as ERK1/2, p38MAPK and JNK. Other relaxin family peptides can activate the receptor to produce alternative patterns of signalling and there is an allosteric modulator 135PAM1 that displays probe-selectivity. There are now a variety of selective peptide agonists and antagonists that will assist in the determination of the physiological roles of the relaxin-RXFP3 system and its potential as a drug target.  相似文献   
984.

Key message

Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings.

Abstract

Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.
  相似文献   
985.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   
986.
987.
Recognition of histone post-translational modifications is pivotal for directing chromatin-modifying enzymes to specific genomic regions and regulating their activities. Emerging evidence suggests that other structural features of nucleosomes also contribute to precise targeting of downstream chromatin complexes, such as linker DNA, the histone globular domain, and nucleosome spacing. However, how chromatin complexes coordinate individual interactions to achieve high affinity and specificity remains unclear. The Rpd3S histone deacetylase utilizes the chromodomain-containing Eaf3 subunit and the PHD domain-containing Rco1 subunit to recognize nucleosomes that are methylated at lysine 36 of histone H3 (H3K36me). We showed previously that the binding of Eaf3 to H3K36me can be allosterically activated by Rco1. To investigate how this chromatin recognition module is regulated in the context of the Rpd3S complex, we first determined the subunit interaction network of Rpd3S. Interestingly, we found that Rpd3S contains two copies of the essential subunit Rco1, and both copies of Rco1 are required for full functionality of Rpd3S. Our functional dissection of Rco1 revealed that besides its known chromatin-recognition interfaces, other regions of Rco1 are also critical for Rpd3S to recognize its nucleosomal substrates and functionin vivo. This unexpected result uncovered an important and understudied aspect of chromatin recognition. It suggests that precisely reading modified chromatin may not only need the combined actions of reader domains but also require an internal signaling circuit that coordinates the individual actions in a productive way.  相似文献   
988.
989.
Microcystis sp., especially in its colonial form, is a common dominant species during cyanobacterial blooms in many iron‐deficient water bodies. It is still not entirely clear, however, how the colonial forms of Microcystis acclimate to iron‐deficient habitats, and the responses of unicellular and colonial forms to iron‐replete and iron‐deficient conditions were examined here. Growth rates and levels of photosynthetic pigments declined to a greater extent in cultures of unicellular Microcystis than in cultures of the colonial form in response to decreasing iron concentrations, resulting in the impaired photosynthetic performance of unicellular Microcystis as compared to colonial forms as measured by variable fluorescence and photosynthetic oxygen evolution. These results indicate that the light‐harvesting ability and photosynthetic capacity of colonial Microcystis was less affected by iron deficiency than the unicellular form. The carotenoid contents and nonphotochemical quenching of colonial Microcystis were less reduced than those of the unicellular form under decreasing iron concentrations, indicating that the colonial morphology enhanced photoprotection and acclimation to iron‐deficient conditions. Furthermore, large amounts of iron were detected in the capsular polysaccharides (CPS) of the colonies, and more iron was found to be attached to the colonial Microcystis CPS under decreasing iron conditions as compared to unicellular cultures. These results demonstrated that colonial Microcystis can acclimate to iron deficiencies better than the unicellular form, and that CPS plays an important role in their acclimation advantage in iron‐deficient waters.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号