首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   30篇
  国内免费   12篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   10篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   32篇
  2014年   21篇
  2013年   22篇
  2012年   30篇
  2011年   22篇
  2010年   14篇
  2009年   15篇
  2008年   11篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1950年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
41.
CD103 is a marker for identification of effector/memory regulatory T cells (Tregs). CD103(+) Tregs are potent suppressors of tissue inflammation in several infectious diseases, autoimmune diseases, and cancers. However, the underlying mechanisms for this potent suppression ability remain unclear. The current study was designed to clarify this issue. Unexpectedly, we found both CD103(+) and CD103(-) Tregs had similar suppression capacity in vitro. We then chose a murine tumor model for investigation of the in vivo behavior of these Tregs. The suppression ability in vivo against the anti-tumor ability of CD8(+) T cells was restricted to CD103(+) Tregs although both Tregs had equal in vitro suppression ability. In addition, CD103(+) Tregs expressed significantly higher levels of CCR5 than those of CD103(-) Tregs and accumulated more in tumors than did CD103(-) Tregs. Furthermore, blockade of CCR5 signaling, either by CCR5(-/-)CD103(+) Tregs or by CCL5 knockdown tumor, could reduce the migration of CD103(+) Tregs into tumors and impair their in vivo suppression ability. In conclusion, these results indicate that the potent in vivo suppression ability of CD103(+) Tregs is due to the tissue-migration ability through CCR5 expression.  相似文献   
42.
43.

Background

Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.

Methodology/Principal Findings

THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression.

Conclusions/Significance

SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.  相似文献   
44.
Conjugation by UDP-Glucuronosyltransferase (UGT) is the major pathway of androgen metabolism and elimination in the human. High concentrations of glucuronide conjugates of androsterone (ADT) and androstane-3alpha,17beta-diol (3alpha-diol) are present in circulation and several studies over the last 30 years have concluded that the serum levels of these metabolites might reflect the androgen metabolism in several tissues, including the liver and androgen target tissues. Three UGT2B enzymes are responsible for the conjugation of DHT and its metabolites ADT and 3alpha-diol: UGT2B7, B15 and B17. UGT2B7 is expressed in the liver and skin whereas UGT2B15 and B17 were found in the liver, prostate and skin. Very specific antibodies against each UGT2B enzyme have been obtained and used for immunohistochemical studies in the human prostate. It was shown that UGT2B17 is expressed in basal cells whereas UGT2B15 is only localized in luminal cells, where it inactivates DHT. By using LNCaP cells, we have also demonstrated that the expression and activity of UGT2B15 and B17 are modulated by several endogenous prostate factors including androgen. Finally, to study the physiological role of UGT2B enzymes, transgenic mice bearing the human UGT2B15 gene were recently obtained. A decrease in reproductive tissue weight from transgenic animals compared to those from control animals was observed. In conclusion, the conjugation by UGT2B7, B15 and B17, which represents a non-reversible step in androgen metabolism, is an important means by which androgens are regulated locally. It is also postulated that UGT enzymes protect the tissue from deleteriously high concentrations of active androgen.  相似文献   
45.
Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of four miRNAs in fatty livers. Upregulation of miR-34a and downregulation of miR-122 was found in livers of STZ-induced diabetic mice. These results demonstrate that distinct miRNAs are strongly dysregulated in NAFLD and hyperglycemia. Comparison between miRNA expressions in livers of ob/ob mice and STZ-administered mice further revealed upregulation of four miRNAs and downregulation of two miRNAs in livers of ob/ob mice, indicating that these miRNAs may represent a molecular signature of NAFLD. A distinctive miRNA expression pattern was identified in ob/ob mouse liver, and hierarchical clustering of this pattern could clearly discriminate ob/ob mice from either normal C57BL/6 mice or STZ-administered mice. These findings suggest an important role of miRNAs in hepatic energy metabolism and implicate the participation of miRNAs in the pathophysiological processes of NAFLD.  相似文献   
46.
47.
48.
49.
50.
HPV16, a high-risk tumorigenic virus, has been identified as one of the causative agents for the development of cervical cancer. Subsequent to viral infection, the constitutive expression of the viral oncoproteins E6 and E7 plays a number of critical roles in maintaining the transformed phenotype. Here we demonstrate that a cellular kinase, dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), interacts with and phosphorylates HPV16E7 in vitro and in vivo. Using substitution mutations, we identified that DYRK1A specifically phosphorylates HPV16E7 at Thr5 and Thr7, which are located within the N-terminal CRI domain. This interaction greatly increases the steady-state level of HPV-16E7 by interfering with the protein's 26S proteosome-dependent degradation. The half-life of E7 was extended significantly by replacing Thr5 and Thr7 with a phosphorylation mimetic residue, aspartic acid. In addition, DYRK1A-induced phosphorylation protected E7 from degradation and influenced E7's function when modulating pRb degradation. We propose a new mechanism whereby DYRK1A phosphorylates Thr5 and Thr7 within HPV16E7. This phosphorylation then interferes with the degradation of HPV16E7, extending the protein half-life of HPV16E7 and increasing the colony-formation efficacy of HPV16E7. Our findings suggest that DYRK1A increases the transforming potential of HPV16-infected cells because of the greater stability of HPV16E7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号