首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28612篇
  免费   2196篇
  国内免费   1891篇
  32699篇
  2024年   95篇
  2023年   472篇
  2022年   984篇
  2021年   1487篇
  2020年   1043篇
  2019年   1303篇
  2018年   1259篇
  2017年   917篇
  2016年   1270篇
  2015年   1801篇
  2014年   2011篇
  2013年   2263篇
  2012年   2538篇
  2011年   2350篇
  2010年   1346篇
  2009年   1195篇
  2008年   1345篇
  2007年   1189篇
  2006年   1084篇
  2005年   900篇
  2004年   809篇
  2003年   682篇
  2002年   619篇
  2001年   408篇
  2000年   403篇
  1999年   367篇
  1998年   220篇
  1997年   202篇
  1996年   207篇
  1995年   183篇
  1994年   155篇
  1993年   121篇
  1992年   176篇
  1991年   170篇
  1990年   134篇
  1989年   112篇
  1988年   109篇
  1987年   111篇
  1986年   79篇
  1985年   94篇
  1984年   54篇
  1983年   59篇
  1982年   29篇
  1981年   28篇
  1980年   24篇
  1979年   38篇
  1978年   30篇
  1977年   21篇
  1975年   30篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
A possibility of functional reorganization of initial sensorimotor connections of the forepaw has been shown on seven cats. The main initial relationships between the afferent tactile input and motor output for the ulnar joint of the cat forepaw are as follows: tactile stimulation of the dorsal surface of the paw produces a flexion in the ulnar joint ("placing reaction"), and that of the ventral surface, an extension of the paw in the ulnar joint ("magnetic reflex"); simultaneous tactile stimulation of the ventral surface of the paw blocks the "placing reaction" evoked by a touch of the dorsal side. Extinction was produced of the above unconditioned connections and elaboration of a new "cross" connection consisting in that tactile stimulation of the ventral side of the paw resulted in flexion in the ulnar joint.  相似文献   
102.
A study was made by histochemical methods of the activity of the enzymatic systems of macrophages from normal rabbits and those immunized with staphylococcus alpha-toxoid per se and infected with the strains of staphylococcus--producers of alpha-toxin or leukocydin. Immunization of rabbits was accompanied by a reduction in macrophages of the activity of the group of lysosomal enzymes and by an increase in the activity of the redox enzymes. In infection of "immune" macrophages with the living culture of the alpha-toxigenic strains the mentioned changes were more pronounced; no such changes were found after the infection with the leukocydin-active strain. The data obtained suggested that the lysosomal enzymes played a definite role in the process of phagocytosis.  相似文献   
103.
Aging is a major risk factor for many diseases,especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Diseas...  相似文献   
104.
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)–induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.  相似文献   
105.
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo.Supplementary key words: macrophage, inflammation, lipid droplet, nanoparticle delivery, in vivo imaging, fatty acid analog, bone marrow, systemic inflammation, lipid trafficking, biomarker

Macrophages, a type of immune cells, almost reside in all tissues of body, from the skin to the bone marrow (BM) (1). Macrophages have remarkable plasticity, and they can be activated into specific subtypes by modifying their physiology and functions in response to local environmental cues. Activated macrophages are commonly divided into proinflammatory killing subtype and anti-inflammatory repairing subtype. Proinflammatory macrophages responding to bacteria, IFN-γ, and lipopolysaccharide (LPS) are involved in host defense and inflammation, whereas anti-inflammatory macrophages responding to interleukin-4 (IL-4), IL-10, and IL-13 play a pivotal role in tissue homeostasis and remodeling (2). Increasing evidence indicates that the reactivation of macrophages toward proinflammatory states under diverse kinds of stress is correlated with a plethora of inflammatory diseases, such as atherosclerosis, diabetes, obesity, rheumatoid arthritis, neurodegeneration, and BM failure syndromes (3, 4). Thus, characterization of macrophage activation status and the underlying molecular mechanism in situ will help elucidate their functions in these diseases; however, in vivo analysis of the macrophage activation status in their native multicellular microenvironment is challenging.Although lipid droplets (LDs) have been initially described as intracellular fat storage organelles in adipocytes, increasing studies indicate that myeloid cells also form LDs under inflammation and stress (5, 6). Macrophages, as the effector cells of innate immunity, are found to form LDs to support their host defense when exposed to pathogens, such as parasites, bacteria, and viruses (7, 8, 9, 10, 11). However, abnormal LD accumulation in tissue-resident macrophages correlates with the pathogenesis of various inflammatory diseases. For instance, foam cells in atherosclerotic lesions can maintain the local inflammatory response by secreting proinflammatory cytokines (12, 13, 14). Moreover, LD-accumulating microglia contribute to neurodegeneration by producing high levels of reactive oxygen species (ROS) and secreting proinflammatory cytokines (15). These findings indicate that LD accumulation might be a hallmark of macrophages with proinflammatory functions.In this study, based on the typical activation of in vitro BM-derived macrophages, we find that proinflammatory M(LPS + IFN-γ) macrophages are characterized by LD accumulation, whereas resting macrophages and anti-inflammatory M(IL-4) and M(IL-10) macrophages do not contain any LDs. These features also hold for Matrigel plug-recruited macrophages and tissue-resident macrophages in mice. These findings demonstrate that LD accumulation could serve as a morphological index to distinguish proinflammatory macrophages from others.It is feasible to distinguish LD-containing cells using imaging techniques, which has translational potential for identification of proinflammatory macrophages in vivo. However, current techniques for LD visualization are traditional in vitro staining method, and in vivo staining and imaging of LD in individual macrophages remains a challenge. Through nanocarrier screening, we selected the poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) as nanocarrier to deliver the lipophilic carbocyanine dye (DiIC18(5) solid (1,1''-dioctadecyl-3,3,3'',3''-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) [DiD]) and lipid staining dye (C1-BODIPY 500/510-C12) into macrophages. Using these dual fluorescence-labeled PLGA NPs, we achieved in situ and in vivo functional identification of single macrophages in various tissues under systemic or local inflammatory stress. Collectively, this study establishes an efficient in vivo labeling and imaging system of intracellular LDs for phenotyping the activation status and functions of individual macrophages in their dynamic niche, which is pivotal for disease diagnosis and preclinical research.  相似文献   
106.
107.
108.
Callus induction,which results in fate transition in plant cells,is considered as the first and key step for plant regeneration.This process can be stimulated in different tissues by a callus-inducing medium(CIM),which contains a high concentration of phytohormone auxin.Although a few key regulators for callus induction have been identified,the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation.Here,we find that high auxin induces callus ...  相似文献   
109.
110.
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund’s adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号