首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2001篇
  免费   191篇
  国内免费   8篇
  2200篇
  2024年   4篇
  2023年   12篇
  2022年   42篇
  2021年   55篇
  2020年   34篇
  2019年   51篇
  2018年   64篇
  2017年   44篇
  2016年   76篇
  2015年   100篇
  2014年   104篇
  2013年   151篇
  2012年   153篇
  2011年   138篇
  2010年   78篇
  2009年   89篇
  2008年   133篇
  2007年   123篇
  2006年   126篇
  2005年   115篇
  2004年   109篇
  2003年   95篇
  2002年   66篇
  2001年   15篇
  2000年   14篇
  1999年   13篇
  1998年   22篇
  1997年   13篇
  1996年   9篇
  1995年   17篇
  1994年   4篇
  1993年   15篇
  1992年   13篇
  1990年   5篇
  1987年   7篇
  1985年   4篇
  1982年   3篇
  1980年   5篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1971年   5篇
  1969年   5篇
  1968年   4篇
  1966年   3篇
  1945年   2篇
  1944年   5篇
  1943年   2篇
  1937年   3篇
  1934年   2篇
排序方式: 共有2200条查询结果,搜索用时 15 毫秒
11.
12.
13.
A synthetic polyanion composed of styrene, maleic anhydride, and methacrylic acid (molar ratio 56:37:7) significantly inhibited the respiration of isolated rat liver mitochondria in a time-dependent fashion that correlated with 1) collapse of the mitochondrial membrane potential and 2) high amplitude mitochondrial swelling. The process is apparently Ca(2+) dependent. Since it is blocked by cyclosporin A, the process is ascribed to induction of the mitochondrial permeability transition. In mitoplasts, i.e., mitochondria lacking their outer membranes, the polyanion rapidly blocked respiration. After incubation of rat liver mitochondria with the polyanion, cytochrome c was released into the incubation medium. In solution, the polyanion modified by conjugation with fluorescein formed a complex with cytochrome c. Addition of the polyanion to cytochrome c-loaded phosphatidylcholine/cardiolipin liposomes induced the release of the protein from liposomal membrane evidently due to coordinated interplay of Coulomb and hydrophobic interactions of the polymer with cytochrome c. We conclude that binding of the polyanion to cytochrome c renders it inactive in the respiratory chain due to exclusion from its native binding sites. Apparently, the polyanion interacts with cytochrome c in mitochondria and releases it to the medium through breakage of the outer membrane as a result of severe swelling. Similar properties were demonstrated for the natural polyanion, tobacco mosaic virus RNA. An electron microscopy study confirmed that both polyanions caused mitochondrial swelling. Exposure of cerebellar astroglial cells in culture to the synthetic polyanion resulted in cell death, which was associated with nuclear fragmentation.  相似文献   
14.
The FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity. Sprys are expressed in close proximity to FGF signaling centers and regulate FGFR-ERK-mediated organogenesis. During endochondral ossification, Spry genes are expressed in prehypertrophic and hypertrophic chondrocytes. Using a conditional transgenic approach in chondrocytes in vivo, the forced expression of Spry1 resulted in neonatal lethality with accompanying skeletal abnormalities resembling thanatophoric dysplasia II, including increased apoptosis and decreased chondrocyte proliferation in the presumptive reserve and proliferating zones. In vitro chondrocyte cultures recapitulated the inhibitory effect of Spry1 on chondrocyte proliferation. In addition, overexpression of Spry1 resulted in sustained ERK activation and increased expression of p21 and STAT1. Immunoprecipitation experiments revealed that Spry1 expression in chondrocyte cultures resulted in decreased FGFR2 ubiquitination and increased FGFR2 stability. These results suggest that constitutive expression of Spry1 in chondrocytes results in attenuated FGFR2 degradation, sustained ERK activation, and up-regulation of p21Cip and STAT1 causing dysregulated chondrocyte proliferation and terminal differentiation.  相似文献   
15.

Background

Metalloproteins myeloperoxidase (MPO), ceruloplasmin (CP) and lactoferrin (LF) play an important role in regulation of inflammation and oxidative stress in vertebrates. It was previously shown that these proteins may work synergetically as antimicrobial and anti-inflammatory agents by forming complexes, such as MPO-CP and LF-CP. However, interaction of metalloprotein molecules with each other has never been characterized at a single-molecule level.

Methods

In this study, the pairwise interactions of MPO, CP and LF molecules were investigated at a single-molecule level using high-resolution atomic force microscopy (AFM). Highly oriented pyrolytic graphite surface (HOPG) modified with oligoglycine-hydrocarbon graphite modifier (GM) was used as a substrate for protein deposition.

Results

The procedure for reliable AFM investigation of metalloproteins and their complexes has been developed. Using this procedure, we have visualized, for the first time, single MPO, CP and LF molecules, characterized the morphology of MPO-CP and LF-CP complexes and confirmed the absence of direct contacts between MPO and LF molecules. Moreover, we have revealed the novel chainlike shape of MPO-CP conjugates.

Conclusions

GM-HOPG was shown to be a convenient substrate for AFM investigation of metalloproteins and their complexes. Direct AFM visualization of MPO-CP and LF-CP complexes, on the one hand, complements previous data obtained from the “bulk techniques” and, on the other hand, provides new insight into the ultrastructure of MPO-CP complexes.

General significance

The obtained results contribute to the better understanding of regulation of inflammation and oxidation stress mediated by collaborative action of the metalloproteins such as MPO, CP and LF.  相似文献   
16.
Biological Trace Element Research - Metal nanoparticles synthesized by green methods with the use of microorganisms are currently one of the most closely studied types of nanomaterials. It has...  相似文献   
17.
Formamidopyrimidine-DNA glycosylase (Fpg) is responsible for removal of 8-oxoguanine (8-oxoG) and other oxidized purine lesions from DNA and can also excise some oxidatively modified pyrimidines [such as dihydrouracil (DHU)]. Fpg is also specific for a base opposite the lesion, efficiently excising 8-oxoG paired with C but not with A. We have applied stopped-flow kinetics using intrinsic tryptophan fluorescence of the enzyme and fluorescence of 2-aminopurine-labeled DNA to analyze the conformational dynamics of Escherichia coli Fpg during processing of good substrates (8-oxoG.C), poor substrates (8-oxoG.A), and substrates of unclear specificity (such as DHU and 8-oxoG opposite T or G). The analysis of fluorescence traces allows us to conclude that when the enzyme encounters its true substrate, 8-oxoG.C, the complex enters the productive catalytic reaction after approximately 50 ms, partitioning the substrate away from the competing dissociation process, while poor substrates linger in the initial encounter complex for longer. Several intermediate ES complexes were attributed to different structures that exist along the reaction pathway. A likely sequence of events is that the damaged base is first destabilized by the enzyme binding and then everted from DNA, followed by insertion of several amino acid residues into DNA and isomerization of the enzyme into a pre-excision complex. We conclude that rejection of the incorrect substrates occurs mostly at the early stage of formation of the pre-eversion recognition complex, supporting the role of indirect readout in damage recognition.  相似文献   
18.
Human acute lung injury is characterized by heterogeneous tissue involvement, leading to the potential for extremes of mechanical stress and tissue injury when mechanical ventilation, required to support critically ill patients, is employed. Our goal was to establish whether regional cellular responses to these disparate local mechanical conditions could be determined as a novel approach toward understanding the mechanism of development of ventilator-associated lung injury. We utilized cross-species genomic microarrays in a unilateral model of ventilator-associated lung injury in anesthetized dogs to assess regional cellular responses to local mechanical conditions that potentially contribute pathogenic mechanisms of injury. Highly significant regional differences in gene expression were observed between lung apex/base regions as well as between gravitationally dependent/nondependent regions of the base, with 367 and 1,544 genes differentially regulated between these regions, respectively. Major functional groupings of differentially regulated genes included inflammation and immune responses, cell proliferation, adhesion, signaling, and apoptosis. Expression of genes encoding both acute lung injury-associated inflammatory cytokines and protective acute response genes were markedly different in the nondependent compared with the dependent regions of the lung base. We conclude that there are significant differences in the local responses to stress within the lung, and consequently, insights into the cellular responses that contribute to ventilator-associated lung injury development must be sought in the context of the mechanical heterogeneity that characterizes this syndrome.  相似文献   
19.
TSC1 and TSC2 mutations cause neoplasms in rare disease pulmonary LAM and neuronal pathfinding in hamartoma syndrome TSC. The specific roles of TSC1 and TSC2 in actin remodeling and the modulation of cell motility, however, are not well understood. Previously, we demonstrated that TSC1 and TSC2 regulate the activity of small GTPases RhoA and Rac1, stress fiber formation and cell adhesion in a reciprocal manner. Here, we show that Tsc1−/− MEFs have decreased migration compared to littermate-derived Tsc1+/+ MEFs. Migration of Tsc1−/− MEFs with re-expressed TSC1 was comparable to Tsc1+/+ MEF migration. In contrast, Tsc2−/− MEFs showed an increased migration compared to Tsc2+/+ MEFs that were abrogated by TSC2 re-expression. Depletion of TSC1 and TSC2 using specific siRNAs in wild type MEFs and NIH 3T3 fibroblasts also showed that TSC1 loss attenuates cell migration while TSC2 loss promotes cell migration. Morphological and immunochemical analysis demonstrated that Tsc1−/− MEFs have a thin protracted shape with a few stress fibers; in contrast, Tsc2−/− MEFs showed a rounded morphology and abundant stress fibers. Expression of TSC1 in either Tsc1−/− or Tsc2−/− MEFs promoted stress fiber formation, while TSC2 re-expression induced stress fiber disassembly and the formation of cortical actin. To assess the mechanism(s) by which TSC2 loss promotes actin re-arrangement and cell migration, we explored the role of known downstream effectors of TSC2, mTORC1 and mTORC2. Increased migration of Tsc2−/− MEFs is inhibited by siRNA mTOR and siRNA Rictor, but not siRNA Raptor. siRNA mTOR or siRNA Rictor promoted stress fiber disassembly in TSC2-null cells, while siRNA Raptor had little effect. Overexpression of kinase-dead mTOR induced actin stress fiber disassembly and suppressed TSC2-deficient cell migration. Our data demonstrate that TSC1 and TSC2 differentially regulate actin stress fiber formation and cell migration, and that only TSC2 loss promotes mTOR- and mTORC2-dependent pro-migratory cell phenotype.  相似文献   
20.
Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad) results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+) in the splenic marginal zone (MZ) play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs) in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation) or CR2-fH (inhibits only the alternative complement activation pathway) prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity – the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement – in orchestrating local inflammation and functional cooperation of PMNs and resident macrophages in the splenic MZ, which collectively contribute to limiting disseminated pathogen spread via elimination of virus-containing cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号