首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   13篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   17篇
  2012年   18篇
  2011年   27篇
  2010年   13篇
  2009年   15篇
  2008年   15篇
  2007年   25篇
  2006年   23篇
  2005年   20篇
  2004年   17篇
  2003年   18篇
  2002年   15篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
81.
Bronchial asthma is a complex disease characterized by airway inflammation involving Th2 cytokines. Among Th2 cytokines, the significance of IL-13 in the pathogenesis of bronchial asthma has recently emerged. Particularly, the direct action of IL-13 on bronchial epithelial cells (BECs) is critical for generation of airway hyperresponsiveness. IL-13 has two binding units; the IL-13 receptor alpha1 chain transduces the IL-13 signal comprising a heterodimer with the IL-4R alpha chain, whereas the IL-13 receptor alpha2 chain (IL-13Ralpha2) is thought to act as a decoy receptor. However, it remains obscure how expression of these molecules is regulated in each cell. In this article, we analyzed the expression of these components in BECs. Either IL-4 or IL-13 induced intracellular expression of IL-13Ralpha2 in BECs, which was STAT6-dependent and required de novo protein synthesis. IL-13Ralpha2 expressed on the cell surface as a monomer inhibited the STAT6-dependent IL-13 signal. Furthermore, expression of IL-13Ralpha2 was induced in lung tissues of ovalbumin-induced asthma model mice. Taken together, our results suggested the possibility that IL-13Ralpha2 induced by its ligand is transferred to the cell surface by an unknown mechanism, and it down-regulates the IL-13 signal in BECs, which functions as a unique negative-feedback system for the cytokine signal.  相似文献   
82.
Antigen-specific immune responses in the skin are initiated by antigen uptake into Langerhans cells and the subsequent migration of these cells to draining lymph nodes. Although prostaglandin E2 (PGE2) is produced substantially in skin exposed to antigen, its role remains unclear. Here we show that although Langerhans cells express all four PGE receptor subtypes, their migration to regional lymph nodes was decreased only in EP4-deficient (Ptger4-/-) mice and in wild-type mice treated with an EP4 antagonist. An EP4 agonist promoted the migration of Langerhans cells, increased their expression of costimulatory molecules and enhanced their ability to stimulate T cells in the mixed lymphocyte reaction in vitro. Contact hypersensitivity to antigen was impaired in Ptger4-/- mice and in wild-type mice treated with the EP4 antagonist during sensitization. PGE2-EP4 signaling thus facilitates initiation of skin immune responses by promoting the migration and maturation of Langerhans cells.  相似文献   
83.
Natural resistance-associated macrophage protein 1 (NRAMP1) has an important role in regulating macrophage functions that affect innate resistance as well as immune responses. We analyzed the microsatellite polymorphism in the promoter region of the human NRAMP1 gene in 206 type 1 diabetes patients and 200 normal children to determine whether this polymorphism might be associated with type 1 diabetes in the Japanese population. The frequency of allele 2 (180 bp) of the promoter microsatellite polymorphism of the NRAMP1gene was slightly lower in the early-onset population (2-10 years of age) of type 1 diabetes patients than in controls, although the difference did not reach statistical significance. The association study of the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) gene, located near the NRAMP1 gene, and type 1 diabetes showed that the CTLA-4 gene significantly contributed to the development of type 1 diabetes, whereas NRAMP1 had an additional effect on the onset of type 1 diabetes in the young population.  相似文献   
84.
Three novel diterpenes, dysokusones A (1), B (2), and C (3), were isolated from the stem of Dysoxylum kuskusense as cytotoxic substances. The structures were established by spectroscopic examinations. Compounds 1, 2, and 3 were cytotoxic toward HL-60(TB) cells with EC50 values of 2.25, 6.35, and 2.37 μM, respectively. Compound 1 also displayed cytotoxicity against K-562 and NCI-H522 cells with EC50 values of 5.04 and 4.80 μM, respectively.  相似文献   
85.
Root growth promoters, 4-hydroxykigelin (1) and 6-demethylkigelin (2), together with 6-hydroxymellein (3) were isolated from cultures of the fungus Aspergillus terreus and their structures were identified by spectroscopic analysis. The biological activities of the three dihydroisocoumarins, 1, 2, and 3, have been examined using a bioassay method with lettuce seedlings. Furthermore, interactions between the dihydroisocoumarins and indole-3-acetic acid against the root growth have been examined.  相似文献   
86.
The mammalian Per1 gene is one of the most important components of circadian clock function of the suprachiasmatic nucleus and peripheral tissues. We examined whether the β2-adrenoceptor agonists, procaterol and fenoterol, induce human Per1 mRNA expression in human bronchial epithelium. The in vitro stimulation of β2-adrenoceptor agonists in BEAS-2B cells led to a remarkable increase in the level of hPer1 mRNA. Moreover, fenoterol or procaterol induced the phosphorylation of CREB in BEAS-2B cells as verified by immunoblot analysis. β2-adrenoceptor agonists induced human Per1 mRNA expression by the signaling pathways of cAMP-CREB in BEAS-2B cells.  相似文献   
87.
There are a large number of labeling methods for asparagine-type oligosaccharides with fluorogenic and chromophoric reagents. We have to choose the most appropriate labeling method based on the purposes such as mass spectrometry, high-performance liquid chromatography and capillary electrophoresis. Asparagine-type glycans are released from core proteins as N-glycosylamine at the initial step of the releasing reaction when glycoamidase F is employed as the enzyme. The N-glycosylamine-type oligosaccharides thus released by the enzyme are subjected to hydrolysis or mutarotation to form free-form oligosaccharides. In the detailed studies on the enzyme reaction, we found a condition in which the released N-glycosylamine-type oligosaccharides were exclusively present at least during the course of enzyme reaction, and developed a method for in situ derivatization of the glycosylamine-type oligosaccharides with 9-fluorenylmethyl chloroformate (Fmoc-Cl). The Fmoc labeled sialo- and asialo- (or high-mannose and hybrid) oligosaccharides were successfully analyzed on an amine-bonded polymer column and amide-silica column, respectively. The present method showed approximately 5 times higher sensitivities than that using 2-aminobenzoic acid (2-AA). The separation profile was similar to that observed using 2-AA method as examined by the analyses of carbohydrate chains derived from several glycoproteins including complex-type, high-mannose type and hybrid type of N-linked oligosaccharides. The labeled oligosaccharides were stable at least for several months when stored at -20 degrees C. Furthermore, it should be emphasized that the Fmoc-derivatized oligosaccharides could be easily recovered as free reducing oligosaccharides simply by incubation with morpholine in dimethylformamide solution. We obtained a pure triantennary oligosaccharide with 3 sialic acid residues as a free reducing form from fetuin in good yield after isolation of the corresponding Fmoc oligosaccharide followed by removing reaction of the Fmoc group. The proposed method will be useful for preparation of free oligosaccharides as standard samples at pmol-nmol scale from commercially available glycoproteins.  相似文献   
88.
Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.  相似文献   
89.
Kupffer cells are liver-specific resident macrophages and play an important role in the physiological and pathological functions of the liver1-3. Although the isolation methods of liver macrophages have been well-described4-6, most of these methods require sophisticated equipment, such as a centrifugal elutriator and technical skills. Here, we provide a novel method to obtain liver macrophages in sufficient number and purity from mixed primary cultures of adult rat liver cells, as schematically illustrated in Figure 1.After dissociation of the liver cells by two-step perfusion method7,8,a fraction mostly composed of parenchymal hepatocytes is prepared and seeded into T75 tissue culture flasks with culture medium composed of DMEM and 10% FCS.Parenchymal hepatocytes lose the epithelial cell morphology within a few days in culture, degenerate or transform into fibroblast-like cells (Figure 2). As the culture proceeds, around day 6, phase contrast-bright, round macrophage-like cells start to proliferate on the fibroblastic cell sheet (Figure 2). The growth of the macrophage-like cells continue and reach to maximum levels around day 12, covering the cell sheet on the flask surface. By shaking of the culture flasks, macrophages are readily suspended into the culture medium. Subsequent transfer and short incubation in plastic dishes result in selective adhesion of macrophages(Figure 3), where as other contaminating cells remain suspended. After several rinses with PBS, attached macrophages are harvested. More than 106 cells can be harvested repeatedly from the same T75 tissue culture flask at two to three day intervals for more than two weeks(Figure 3).The purities of the isolated macrophages were 95 to 99%, as evaluated by flow cytometry or immunocytochemistry with rat macrophage-specific antibodies (Figure 4).The isolated cells show active phagocytosis of polystylene beads (Figure 5), proliferative response to recombinant GM-CSF, secretion of inflammatory/anti-inflammatory cytokines upon stimulation with LPS, and formation of multinucleated giant cells9.In conclusion, we provide a simple and efficient method to obtain liver macrophages in sufficient number and purity without complex equipment and skills.This method might be applicable to other mammalian species.  相似文献   
90.
The mammalian Per1 gene is one of the most important components of circadian clock function of the suprachiasmatic nucleus and peripheral tissues. We examined whether the β2‐adrenoceptor agonists, procaterol and fenoterol, induce human Per1 mRNA expression in human bronchial epithelium. The in vitro stimulation of β2‐adrenoceptor agonists in BEAS‐2B cells led to a remarkable increase in the level of hPer1 mRNA. Moreover, fenoterol or procaterol induced the phosphorylation of CREB in BEAS‐2B cells as verified by immunoblot analysis. β2‐adrenoceptor agonists induced human Per1 mRNA expression by the signaling pathways of cAMP‐CREB in BEAS‐2B cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号