首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   13篇
  280篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   17篇
  2012年   18篇
  2011年   27篇
  2010年   13篇
  2009年   15篇
  2008年   15篇
  2007年   25篇
  2006年   23篇
  2005年   20篇
  2004年   17篇
  2003年   18篇
  2002年   15篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有280条查询结果,搜索用时 0 毫秒
271.
The aim of the present study was to analyze the neuromodulation of rectoanal reflex activity by lumbar sympathetic nerves in guinea pigs. The mechanical activities of the rectum were recorded with a balloon connected to a pressure transducer, and those of the internal anal sphincter (IAS) were recorded with a custom-made strain gauge force transducer. Gradual and sustained rectal distension evoked the rectoanal reflex, causing cholinergic contractions of the rectum and synchronous nitrergic relaxations of the IAS. Section of the lumbar colonic nerves enhanced both rectal contractions and IAS relaxations. Section of the 13th thoracic cord abolished both rectal contractions and IAS relaxations, but section of the lumbar colonic nerves restored them. Lumbar sympathectomy and pithing sacral cords greatly diminished these rectal contractions and IAS relaxations, but the intrinsic reflex component remained. NG-nitro-L-arginine methyl ester enhanced the intrinsic reflex-mediated contraction of the rectum and abolished reflex-mediated relaxation of the IAS and converted into cholinergic contractions. The present results indicate that the extrinsic lumbar inhibitory outflow causes marked inhibition of the rectoanal reflex via the lumbar colonic nerves.  相似文献   
272.
The rectal distension-evoked reflex rectal (R-R) contractions and internal anal sphincter (R-IAS) relaxations in guinea pigs were generated through the extrinsic sacral excitatory nerve pathway (pelvic nerves) and the intrinsic cholinergic excitatory and nitrergic inhibitory nerve pathways. The aim of the present study was to evaluate whether a prokinetic benzamide, mosapride, enhances the R-R and R-IAS reflexes mediated via 5-HT4 receptors in the guinea pig. The mechanical activities of the R and IAS were recorded with a balloon connected to a pressure transducer and a strain gauge force transducer in the anesthetized guinea pig with intact spinal-intestinal pathways. Gradual and sustained rectal distension evoked R-R contractions and synchronous R-IAS relaxations. Mosapride (0.1-1.0 mg/kg i.v.) dose-dependently enhanced both R-R and R-IAS reflex responses. Reflex indexes for R-R and R-IAS maximally increased from 1.0 (control) to 1.92 and 1.88, respectively. A specific 5-HT4 receptor antagonist, GR 113808 (1.0 mg/kg i.v.), antagonized the enhancement of the R-R and R-IAS reflexes induced by mosapride 1.0 mg/kg i.v. The present results indicate that mosapride enhanced the R-R and R-IAS reflexes mediated through 5-HT4 receptors.  相似文献   
273.
Microbial diversity and populations in a hydrothermal plume that was present inside the caldera of the Suiyo Seamount, a submarine volcano on the Izu-Bonin Arc, were investigated by performing a phylogenetic analysis of the 16S rRNA gene and by using fluorescence in situ hybridization (FISH). Corresponding to transmissivity, an indicator of turbidity, the vertical total cell count as determined by 4',6'-diamidino-2-phenylindole (DAPI) staining varied from 5.6 x 10(4) to 1.1 x 10(5) cells ml(-1), and the apparent plume layer was assessed to be at a depth of 1,050 to 1,200 m inside the caldera and to contain 1.0 x 10(5) to 1.1 x 10(5) cells ml(-1). From microbial samples collected in the plume by an in situ filtration system, the following two major phylogenetic groups, which were closely related to sulfur-oxidizing microbes, were obtained: the SUP05 group belonging to the gamma subclass of the Proteobacteria (13 of 20 clones) and the SUP01 group belonging to the epsilon subclass of the Proteobacteria (5 of 20 clones). Specific oligonucleotide probes for these groups (SUP05-187 and SUP01-63) were designed and were used with various water samples obtained from the Suiyo Seamount. In the apparent plume layer, up to 66% of the total counts of microbial cells were estimated to be Bacteria cells that hybridized to EUB338, and few cells were identified by the archaeal probe ARCH915. Almost all Bacteria cells were hard to identify with the known group-specific probes, such as ALF19, GAM42a, and CF319, while 88 to 90% of the Bacteria cells hybridized with SUP05-187 and >98% of them were considered members of the SUP05 and SUP01 populations. In a low-temperature vent fluid emitted from a bivalve-colonized mound, the SUP05 cells accounted for >99% of the Bacteria cells, suggesting that a portion of the plume cells originated on the surface of the seafloor at a depth of about 1,380 m. From further analysis of cell morphology (i.e., cell size and cell elongation index) we inferred that the SUP05 cells were active in the plume layer at a depth of 1,050 to 1,200 m compared to the activity in a near-bottom layer, while many elongated cells were found between these layers. These findings suggest that the morphology and distribution of SUP05 cells have complex relationships with hydrothermal activities and water circulation. Although growth and production rates remain to be defined, we concluded that this Suiyo Seamount caldera has functioned as a natural continuous incubator for these two phylotypes of Bacteria in an aphotic deep-sea environment.  相似文献   
274.
We hypothesized that there are no differences in left ventricular (LV) mechanoenergetics between after hyperpolarized cardioplegic arrest by nicorandil (nicorandil arrest) and after depolarized one by high potassium chloride (KCl arrest). The aim of the present study was to test this hypothesis using LV curved end-systolic pressure-volume relation (ESPVR) and linear pressure-volume area (PVA)-myocardial oxygen consumption per beat (VO2) relation. All hearts underwent 30 min global ischemia (30 degrees C) after infusion of 5 ml of cardioplegia. Cardioplegia consisted of either 30 mmol/l KCl (7 hearts) or nicorandil (100 micromol/l) in Tyrode solution (6 hearts). After a 30-min blood reperfusion, ESPVR and VO2-PVA relation were assessed again. Mean end-systolic pressure (ESP(mLVV)) and mean PVA at midrange LV volume (PVA(mLVV)) significantly (P < 0.05) decreased to 79.1 +/- 13.4% and 85.4 +/- 17.1% of control after KCl arrest and to 85.3 +/- 14.8% and 86.4 +/- 16.9% of control after nicorandil arrest. There were no significant differences in both decreases of mean ESP(mLVV) and PVA(mLVV) between each arrest. The slopes of VO2-PVA relations were also unchanged after each arrest. There was a significant (P < 0.005) difference in the decreases of mean VO2 intercepts of VO2-PVA relations between post-KCl arrest (73.9 +/- 8.2% of control) and post-nicorandil arrest (99.2 +/- 10.1% of control), however. Proteolysis of alpha-fodrin due to Ca2+ overload was significantly marked after KCl arrest. The present results indicate that the total calcium handling in excitation-contraction coupling is transiently impaired after KCl arrest, whereas it is unchanged after nicorandil arrest. This suggests the possibility that nicorandil is a better cardioplegia than KCl.  相似文献   
275.
The mitochondrial respiratory chain inevitably produces reactive oxygen species as byproducts of aerobic ATP synthesis. Mitochondrial DNA (mtDNA), which is located close to the respiratory chain, is reported to contain much more 8-oxoguanine (8-oxoG), an oxidatively modified guanine base, than nuclear DNA. Despite such a high amount of 8-oxoG in mtDNA (1-2 8-oxoG/10(4) G), mtDNA is barely cleaved by an 8-oxoG DNA glycosylase or MutM, which specifically excises 8-oxoG from a C:8-oxoG pair. We find here that about half of human mtDNA molecules are cleaved by another 8-oxoG-recognizing enzyme, an adenine DNA glycosylase or MutY, which excises adenine from an A:8-oxoG pair. The cleavage sites are mapped to adenines. The calculated number of MutY-sensitive sites in mtDNA is approximately 1.4/10(4) G. This value roughly corresponds with the electrochemically measured amount of 8-oxoG in mtDNA (2.2/10(4) G), raising the possibility that 8-oxoG mainly accumulates as an A:8-oxoG pair.  相似文献   
276.
An endocrine disrupter, bisphenol-A is widely used in the production of plastics and coatings. Recently, it was reported that bisphenol-A affected neurotransmitters in the mammalian brain. On the basis of these reports, it was considered that bisphenol-A affected neuronal differentiation. In this study, the morphological changes in nerve growth factor (NFG)-induced differentiation caused by bisphenol-A were confirmed using a PC12 cell system. When a low concentration of bisphenol-A was added to medium containing NGF, it inhibited neurite extension. In addition, to clarify whether bisphenol-A affects the early and late stages of the NGF-signaling pathway in cell differentiation, changes of phosphorylation of MAP kinases and cAMP-response element binding protein (CREB) in PC12 cells treated with and without BPA in medium containing NGF were investigated using western blot analysis. As results, bisphenol-A significantly inhibited phosphorylation of CREB and ERK1/2 MAPK.  相似文献   
277.
The plant cuticle consists of aliphatic wax and cutin, and covers all the aerial tissues, conferring resistance to both biotic and abiotic stresses. In this study, we performed phenotypic characterizations of tomato mutants having both sticky peel (pe) and light green (lg) mutations. Our genetic analysis showed that these two mutations are tightly linked and behave like a monogenic recessive mutation. The double mutant (pe lg) produced glossy soft fruits with light green leaves, most likely due to defects in cuticle formation. Cytological analysis revealed that the thickness of the fruit cuticle layer was dramatically reduced in the pe lg mutant. The epidermal cells of the leaves were also deformed in the pe lg mutant, suggesting that leaf cuticle formation was also disrupted in the mutant. Consistent with this, transmission electron microscopic analysis showed that the electron density of the cuticle layer of the adaxial surface of the leaf was reduced in the pe lg mutant compared to WT, suggesting that there are changes in cuticle structure and/or composition in the pe lg mutant. Both physiological analysis to measure the rate of transpiration, and staining of the fruits and leaves with toluidine blue, revealed that water permeability was enhanced in the pe lg mutant, consistent with the reduced thickness of its cuticle layer. Taken together the preliminary analyses of the cuticle components, the PE LG is most likely involved in proper cuticle formation.  相似文献   
278.
The newt is an indispensable model animal, of particular utility for regeneration studies. Recently, a high-throughput transgenic protocol was established for the Japanese common newt, Cynops pyrrhogaster. For studies of regeneration, metamorphosed animals may be favorable; however, for this species, there is no efficient protocol for maintaining juveniles after metamorphosis in the laboratory. In these animals, survival drops drastically after metamorphosis as their foraging behaviour changes to adapt to a terrestrial habitat, making feeding in the laboratory with live or moving foods more difficult. To elevate the efficiency of laboratory rearing of this species, we examined metamorphosis inhibition (Ml) protocols to bypass the period (four months to two years after hatching) in which the animal feeds exclusively on moving foods. We found that approximately 30% of animals survived after 2-year Ml, and that the survivors continuously grew, only with static food while maintaining their larval form and foraging behaviour in 0.02% thiourea (TU) aqueous solution, then metamorphosed when returned to a standard rearing solution even after 2-year-MI. The morphology and foraging behavior (feeding on static foods in water) of these metamorphosed newts resembled that of normally developed adult newts. Furthermore, they were able to fully regenerate amputated limbs, suggesting regenerative capacity is preserved in these animals. Thus, controlling metamorphosis with TU allows newts to be reared with the same static food under aqueous conditions, providing an alternative rearing protocol that offers the advantage of bypassing the critical period and obtaining animals that have grown sufficiently for use in regeneration studies.  相似文献   
279.
Meiotic protoplasts obtained from lily microsporocytes in late prophase to telophase I were cultured in an enzyme solution which prevents formation of a cell wall around the protoplsts. The removal of the surface wall interfered with nuclear and cell division when the wall was removed prior to metaphase. The main effects were non-segregation of chromosomes and aberrant cytokinesis. In contrast, the absence of a cell wall during the later periods in which actual segregation of the nucleus and cytoplasm takes place did not interfere with the spindle function. The regular process was accomplished through the formation of a cell plate or septum, and 2 hemispheric daughter protoplasts were formed. After that, a furrow was usually formed at the septum in the absence of a surrounding cell wall, and the protoplasts became dumbbell shaped. Some abnormal behavior was also observed using the time lapse technique.  相似文献   
280.
ABSTRACT

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.

Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号