首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16162篇
  免费   1627篇
  国内免费   1683篇
  2024年   44篇
  2023年   237篇
  2022年   646篇
  2021年   982篇
  2020年   706篇
  2019年   889篇
  2018年   844篇
  2017年   615篇
  2016年   832篇
  2015年   1063篇
  2014年   1266篇
  2013年   1270篇
  2012年   1469篇
  2011年   1303篇
  2010年   775篇
  2009年   739篇
  2008年   812篇
  2007年   678篇
  2006年   548篇
  2005年   480篇
  2004年   495篇
  2003年   502篇
  2002年   442篇
  2001年   375篇
  2000年   284篇
  1999年   236篇
  1998年   155篇
  1997年   114篇
  1996年   120篇
  1995年   75篇
  1994年   78篇
  1993年   61篇
  1992年   59篇
  1991年   65篇
  1990年   52篇
  1989年   34篇
  1988年   28篇
  1987年   28篇
  1986年   22篇
  1985年   25篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
The fruit of Crataegus dahurica Koehne was used to treat the disease of infantile indigestion and dyspepsia as an ethnic medicine and food. As a continuous work on finding the active constituents from the edible herbs, four new biphenyl derivatives ( 1 – 4 ), together with two known compounds ( 5 and 6 ), were obtained from the petroleum ether fraction of the fruits of C. dahurica. Their structures were determined by the extensive 1D and 2D NMR spectra and HR‐MS spectrometry. Furthermore, the anti‐inflammatory activities of all the isolated compounds were investigated, in which compound 4 showed moderately inhibitory effects on NO production in RAW264.7 cells without inducing cytotoxicity.  相似文献   
172.
Two new abietane diterpenoids, (3S,5R,10S)‐3‐hydroxy‐12‐O‐demethyl‐11‐deoxy‐19(4→3)‐abeo‐cryptojaponol, 12,19‐dihydroxyabieta‐8,11,13‐trien‐7‐one, were isolated from Selaginella moellendorffii Hieron., together with one known abietane diterpenoid and four known tetracyclic triterpenoids. Their structures were characterized by their 1D‐ and 2D‐NMR, ECD and mass spectral studies. All compounds were tested for their inhibitory effects on proliferation of three human cancer cells (human non‐small‐cell lung carcinoma cell lines A549 and human breast adenocarcinoma cell lines MDA‐MB‐231 and MCF‐7) in vitro. Among them, three compounds displayed modest cytotoxic activities against the above three human cancer cell lines with IC50 values ranging from 16.28 to 40.67 μM.  相似文献   
173.
174.
The application of lithium (Li) metal anodes in rechargeable batteries is primarily restricted by Li dendrite growth on the metal's surface, which leads to shortened cycle life and safety concerns. Herein, well‐spaced nanotubes with ultrauniform surface curvature are introduced as a Li metal anode structure. The ultrauniform nanotubular surface generates uniform local electric fields that evenly attract Li‐ions to the surface, thereby inducing even current density distribution. Moreover, the well‐defined nanotube spacing offers Li diffusion pathways to the electroactive areas as well as the confined spaces to host deposited Li. These structural attributes create a unique electrodeposition manner; i.e., Li metal homogenously deposits on the nanotubular wall, causing each Li nanotube to grow in circumference without obvious sign of dendritic formation. Thus, the full‐cell battery with the spaced Li nanotubes exhibits a high specific capacity of 132 mA h g?1 at 1 C and an excellent coulombic efficiency of ≈99.85% over 400 cycles.  相似文献   
175.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   
176.
The interfacial instability between a thiophosphate solid electrolyte and oxide cathodes results in rapid capacity fade and has driven the need for cathode coatings. In this work, the stability, evolution, and performance of uncoated, Li2ZrO3‐coated, and Li3B11O18‐coated LiNi0.5Co0.2Mn0.3O2 cathodes are compared using first‐principles computations and electron microscopy characterization. Li3B11O18 is identified as a superior coating that exhibits excellent oxidation/chemical stability, leading to substantially improved performance over cells with Li2ZrO3‐coated or uncoated cathodes. The chemical and structural origin of the different performance is interpreted using different microscopy techniques which enable the direct observation of the phase decomposition of the Li2ZrO3 coating. It is observed that Li is already extracted from the Li2ZrO3 in the first charge, leading to the formation of ZrO2 nanocrystallites with loss of protection of the cathode. After 50 cycles separated (Co, Ni)‐sulfides and Mn‐sulfides can be observed within the Li2ZrO3‐coated material. This work illustrates the severity of the interfacial reactions between a thiophosphate electrolyte and oxide cathode and shows the importance of using coating materials that are absolutely stable at high voltage.  相似文献   
177.
178.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   
179.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
180.
Although 2D Ti3C2Tx is a good candidate for supercapacitors, the restacking of nanosheets hinders the ion transport significantly at high scan rates, especially under practical mass loading (>10 mg cm?2) and thickness (tens of microns). Here, Ti3C2Tx‐NbN hybrid film is designed by self‐assembling Ti3C2Tx with 2D arrays of NbN nanocrystals. Working as an interlayer spacer of Ti3C2Tx, NbN facilitates the ion penetration through its 2D porous structure; even at extremely high scan rates. The hybrid film shows a thickness‐independent rate performance (almost the same rate capabilities from 2 to 20 000 mV s?1) for 3 and 50 µm thick electrodes. Even a 109 µm thick Ti3C2Tx‐NbN electrode shows a better rate performance than 25 µm thick pure Ti3C2Tx electrodes. This method may pave a way to controlling ion transport in electrodes composed of 2D conductive materials, which have potential applications in high‐rate energy storage and beyond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号