首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29133篇
  免费   2125篇
  国内免费   1609篇
  32867篇
  2024年   64篇
  2023年   347篇
  2022年   832篇
  2021年   1405篇
  2020年   961篇
  2019年   1188篇
  2018年   1167篇
  2017年   829篇
  2016年   1227篇
  2015年   1896篇
  2014年   2125篇
  2013年   2284篇
  2012年   2610篇
  2011年   2287篇
  2010年   1453篇
  2009年   1234篇
  2008年   1511篇
  2007年   1328篇
  2006年   1165篇
  2005年   979篇
  2004年   790篇
  2003年   695篇
  2002年   533篇
  2001年   479篇
  2000年   379篇
  1999年   411篇
  1998年   243篇
  1997年   265篇
  1996年   252篇
  1995年   214篇
  1994年   217篇
  1993年   150篇
  1992年   216篇
  1991年   184篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
In less than three years, the photovoltaic community has witnessed a rapid emergence of a new class of solid‐state heterojunction solar cells based on solution‐processable organometal halide perovskite absorbers. The energy conversion efficiency of solid‐state perovskite solar cells (PSCs) has been quickly increased to a certified value of 20.1% by the end of 2014 because of their unique characteristics, such as a broad spectral absorption range, large absorption coefficient, high charge carrier mobility and diffusion length. Here, the focus is specifically on recent developments of hole‐transporting materials (HTMs) in PSCs, which are essential components for achieving high solar cell efficiencies. Some fundamentals with regard to PSCs are first presented, including the history of PSCs, device architectures and general operational principles of PSCs as well as various techniques developed for the fabrications of uniform and dense perovskite complexes. A broad range of the state‐of‐the‐art HTMs being used in PSCs are then discussed in detail. Finally, an outlook on the design of more efficient HTMs for highly efficient PSCs is addressed.  相似文献   
942.
943.
Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.  相似文献   
944.
Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication.  相似文献   
945.
Metabolic homeostasis is critical for all biological processes in the brain. The metabolites are considered the best indicators of cell states and their rapid fluxes are extremely sensitive to cellular changes. While there are a few studies on the metabolomics of Parkinson’s disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and the disease. Using ultra-high performance liquid chromatography and tandem mass spectroscopy (UPLC/MS), we generated the metabolomics profiling data from the brains of young and aged male PD-related α-synuclein A53T transgenic mice as well as the age- and gender-matched non-transgenic (nTg) controls. Principal component and unsupervised hierarchical clustering analyses identified distinctive metabolites influenced by aging and the A53T mutation. The following metabolite set enrichment classification revealed the alanine metabolism, redox and acetyl-CoA biosynthesis pathways were substantially disturbed in the aged mouse brains regardless of the genotypes, suggesting that aging plays a more prominent role in the alterations of brain metabolism. Further examination showed that the interaction effect of aging and genotype only disturbed the guanosine levels. The young A53T mice exhibited lower levels of guanosine compared to the age-matched nTg controls. The guanosine levels remained constant between the young and aged nTg mice, whereas the aged A53T mice showed substantially increased guanosine levels compared to the young mutant ones. In light of the neuroprotective function of guanosine, our findings suggest that the increase of guanosine metabolism in aged A53T mice likely represents a protective mechanism against neurodegeneration, while monitoring guanosine levels could be applicable to the early diagnosis of the disease.  相似文献   
946.
947.
Eukaryotes have evolved an array of membrane compartments constituting secretory and endocytic pathways that allow the flow of materials. Both pathways perform important regulatory roles. The secretory pathway is essential for the production of extracellular, secreted signal molecules, but its function is not restricted to a mere route connecting intra‐ and extracellular compartments. Post‐translational modifications also play an integral function in the secretory pathway and are implicated in developmental regulation. The endocytic pathway serves as a platform for relaying signals from the extracellular stimuli to intracellular mediators, and then ultimately inducing signal termination. Here, we discuss recent studies showing that dysfunction in membrane dynamics causes patterning defects in embryogenesis and tissue morphogenesis in mammals. Birth Defects Research (Part C) 108:33–44, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
948.
949.
950.
P7, a peptide analogue derived from cell‐penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti‐Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l ‐phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin‐treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC‐P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号