首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  国内免费   2篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
31.
At present, the COVID-19 pandemic is running rampant, having caused 2.18 million deaths. Characterizing the global patent landscape of coronaviruses is essential not only for informing research and policy, given the current pandemic crisis, but also for anticipating important future developments. While patents are a promising indicator of technological knowledge production widely used in innovation research, they are often an underused resource in biological sciences. In this study, we present a patent landscape for the seven coronaviruses known to infect humans. The information included in this paper provides a strong intellectual groundwork for the ongoing development of therapeutic agents and vaccines along with a deeper discussion of intellectual property rights under epidemic conditions. The results show that there has been a rapid increase in human coronavirus patents, especially COVID-19 patents. China and the United States play an outstanding role in global cooperation and patent application. The leading role of academic institutions and government is increasingly apparent. Notable technological issues related to human coronaviruses include pharmacochemical treatment, diagnosis of viral infection, viral-vector vaccines, and traditional Chinese medicine. Furthermore, a critical challenge lies in balancing commercial competition, enterprise profit, knowledge sharing, and public interest.  相似文献   
32.
The severe cases of Coronavirus Disease 2019 (COVID-19) frequently exhibit excessive inflammatory responses, acute respiratory distress syndrome (ARDS), coagulopathy, and organ damage. The most striking immunopathology of advanced COVID-19 is cytokine release syndrome or “cytokine storm” that is attributable to the deficiencies in immune regulatory mechanisms. CD4+FoxP3+ regulatory T cells (Tregs) are central regulators of immune responses and play an indispensable role in the maintenance of immune homeostasis. Tregs are likely involved in the attenuation of antiviral defense at the early stage of infection and ameliorating inflammation-induced organ injury at the late stage of COVID-19. In this article, we review and summarize the current understanding of the change of Tregs in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss the potential role of Tregs in the immunopathology of COVID-19. The emerging concept of Treg-targeted therapies, including both adoptive Treg transfer and low dose of IL-2 treatment, is introduced. Furthermore, the potential Treg-boosting effect of therapeutic agents used in the treatment of COVID-19, including dexamethasone, vitamin D, tocilizumab and sarilumab, chloroquine, hydroxychloroquine, azithromycin, adalimumab and tetrandrine, is discussed. The problems in the current study of Treg cells in COVID-19 and future perspectives are also addressed.  相似文献   
33.
Modern neuroimaging technologies have substantially advanced the measurement of brain activity. Electroencephalogram (EEG) as a noninvasive neuroimaging technique measures changes in electrical voltage on the scalp induced by brain cortical activity. With its high temporal resolution, EEG has emerged as an increasingly useful tool to study brain connectivity. Challenges with modeling EEG signals of complex brain activity include interactions among unknown sources, low signal-to-noise ratio, and substantial between-subject heterogeneity. In this work, we propose a state space model that jointly analyzes multichannel EEG signals and learns dynamics of different sources corresponding to brain cortical activity. Our model borrows strength from spatially correlated measurements and uses low-dimensional latent states to explain all observed channels. The model can account for patient heterogeneity and quantify the effect of a subject's covariates on the latent space. The EM algorithm, Kalman filtering, and bootstrap resampling are used to fit the state space model and provide comparisons between patient diagnostic groups. We apply the developed approach to a case-control study of alcoholism and reveal significant attenuation of brain activity in response to visual stimuli in alcoholic subjects compared to healthy controls.  相似文献   
34.
Biomarkers are often organized into networks, in which the strengths of network connections vary across subjects depending on subject-specific covariates (eg, genetic variants). Variation of network connections, as subject-specific feature variables, has been found to predict disease clinical outcome. In this work, we develop a two-stage method to estimate biomarker networks that account for heterogeneity among subjects and evaluate network's association with disease clinical outcome. In the first stage, we propose a conditional Gaussian graphical model with mean and precision matrix depending on covariates to obtain covariate-dependent networks with connection strengths varying across subjects while assuming homogeneous network structure. In the second stage, we evaluate clinical utility of network measures (connection strengths) estimated from the first stage. The second-stage analysis provides the relative predictive power of between-region network measures on clinical impairment in the context of regional biomarkers and existing disease risk factors. We assess the performance of proposed method by extensive simulation studies and application to a Huntington's disease (HD) study to investigate the effect of HD causal gene on the rate of change in motor symptom through affecting brain subcortical and cortical gray matter atrophy connections. We show that cortical network connections and subcortical volumes, but not subcortical connections are identified to be predictive of clinical motor function deterioration. We validate these findings in an independent HD study. Lastly, highly similar patterns seen in the gray matter connections and a previous white matter connectivity study suggest a shared biological mechanism for HD and support the hypothesis that white matter loss is a direct result of neuronal loss as opposed to the loss of myelin or dysmyelination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号