首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   40篇
  国内免费   152篇
  2024年   1篇
  2023年   9篇
  2022年   11篇
  2021年   33篇
  2020年   14篇
  2019年   30篇
  2018年   25篇
  2017年   28篇
  2016年   15篇
  2015年   34篇
  2014年   33篇
  2013年   47篇
  2012年   66篇
  2011年   67篇
  2010年   30篇
  2009年   36篇
  2008年   35篇
  2007年   19篇
  2006年   32篇
  2005年   13篇
  2004年   9篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1992年   1篇
  1988年   1篇
  1985年   3篇
  1983年   2篇
  1981年   1篇
排序方式: 共有604条查询结果,搜索用时 0 毫秒
41.
Wu C  Ma SS  Ge JF  Wang YY  Tian HN  Liu XB  Zhang B  Liu FM  Zhang XK  Li QJ 《Gene》2012,499(2):347-351
GalNAc-T14 was identified as a novel IGFBP-3 binding partner in previous studies. Here, we furtherly confirmed the interaction between them by confocal microscopy, and identified the binding domain and probable interaction sites of GalNAc-T14 with IGFBP-3. The result of subcellular localization indicated that GalNAc-T14 was distributed in the cytosol, whereas IGFBP-3 existed in the cytosol and nucleolus. Confocal analyses demonstrated that IGFBP-3 and GalNAc-T14 colocalized in the cytosol. The result from yeast two hybrid assay showed that the C terminus of GalNAc-T14 (408-552aa) was essential for the interaction between GalNAc-T14 and IGFBP-3, especially Tyr(408), Pro(409), and Glu(410) of GalNAc-T14 may play key roles in the interaction with IGFBP-3. In conclusion, these studies demonstrated that IGFBP-3 and GalNAc-T14 are colocalized in MCF-7 cells and confirmed the interaction between IGFBP-3 and GalNAc-T14. This interaction may play an important role in the functional regulation of IGFBP-3.  相似文献   
42.
J. Neurochem. (2012) 122, 1047-1053. ABSTRACT: Retinitis pigmentosa is a group of diseases in which one of hundreds of mutations causes death of rod photoreceptor cells and then cones gradually die from oxidative damage. As different mutations cause rod cell death by different mechanisms, mutation-specific treatments are needed. Another approach is to use a neurotrophic factor to promote photoreceptor survival regardless of the mechanism of cell death, and previous studies have demonstrated encouraging short-term results with gene transfer of glial cell line-derived neurotrophic factor (GDNF). We generated rd10 mice with doxycycline-inducible expression of GDNF in photoreceptors (Tet/IRBP/GDNF-rd10 mice) or retinal pigmented epithelial cells (Tet/VMD2/GDNF-rd10 mice). In doxycycline-treated Tet/IRBP/GDNF-rd10 mice, there was a 9.3?×?10(4) -fold increase in Gdnf mRNA at P35 and although it decreased over time, it was still increased by 9.4?×?10(3) -fold at P70. Gdnf mRNA was increased 4.5?×?10(2) -fold in doxycycline-treated Tet/VMD2/GDMF-rd10 mice at P35 and was not significantly decreased at P70. GDNF protein levels were increased about 2.3-fold at P35 and 30% at P70 in Tet/IRBP/GDNF-rd10 mice, and in Tet/VMD2/GDNF-rd10 mice they were increased 30% at P35 and not significantly increased at P70. Despite the difference in expression, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 mice had comparable significant increases in outer nuclear layer thickness and mean photopic and scotopic ERG b-wave amplitudes compared with rd10 mice at P35 which decreased, but was still significant at P70. Compared with rd10 mice, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 mice had comparable significant improvements in cone density at P50 that decreased, but were still significant at P70. These data indicate that despite a large difference in expression of GDNF, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 provide comparable slowing of photoreceptor degeneration, but cannot stop the degeneration.  相似文献   
43.
44.
We describe a convenient and simple continuous spectrophotometric method for the determination of mitogen-activated protein kinase (MAPK) kinase activity with its protein substrate. The assay relies on the measurement of phosphoprotein product generated in the first step of the MAPK kinase reaction. Dephosphorylation of the phosphoprotein is coupled to a MAPK phosphatase to generate phosphate, which is then used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methyl purine ribonucleoside. Of the reaction products ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360nm relative to the nucleoside and, hence, provides a spectrophotometric signal that can be continuously followed. In the presence of excess phosphatase, the phosphorylated protein substrate molecules undergo dephosphorylation almost immediately after their formation; the steady-state use of the resultant inorganic phosphate is a reflection of the constant initial velocity of the exchange reaction. The validity of this method has been confirmed by using it to measure the activities of MEK1 (MAPK/ERK kinase 1) and MKK6 (MAPK kinase 6) toward their physiological substrates. Our findings of the MAPK kinases in the current study provide evidence that the substrate binding affinities of this subfamily of protein kinases are at the submicromolar concentration.  相似文献   
45.
The potential of angiogenin (Ang) for clinical use has been highlighted in view of its important roles in inducing angiogenesis, facilitating cell proliferation, and inhibiting cell apoptosis. To produce soluble, correctly folded recombinant protein with a high yield, a DNA fragment encoding human Ang was inserted into eukaryotic expression vector pPIC9 and transformed into Pichia pastoris. The expression of recombinant human Ang (rhAng) accounted for about 70% of total secreted proteins. Purifying the Ang from the culture supernatant yielded 30 mg/L at 90% purity by chromatography with a SP Sepharose FF column. Biological assays indicated that rhAng can induce new blood-vessel formation, promote HeLa cell proliferation, increase Erk1/2 phosphorylation, and upregulate c-myc expression. Preparation of bioactive rhAng might lay the basis for further functional study, and might provide an effective strategy for large-scale production of soluble human Ang.  相似文献   
46.
Hu YY  Zhang YL  Luo HH  Li W  Oguchi R  Fan DY  Chow WS  Zhang WF 《Planta》2012,235(2):325-336
Non-foliar green organs are recognized as important carbon sources after leaves. However, the contribution of each organ to total yield has not been comprehensively studied in relation to the time-course of changes in surface area and photosynthetic activity of different organs at different growth stages. We studied the contribution of leaves, main stem, bracts and capsule wall in cotton by measuring their time-course of surface area development, O2 evolution capacity and photosynthetic enzyme activity. Because of the early senescence of leaves, non-foliar organs increased their surface area up to 38.2% of total at late growth stage. Bracts and capsule wall showed less ontogenetic decrease in O2 evolution capacity per area and photosynthetic enzyme activity than leaves at the late growth stage. The total capacity for O2 evolution of stalks and bolls (bracts plus capsule wall) was 12.7 and 23.7% (total ca. 36.4%), respectively, as estimated by multiplying their surface area by their O2 evolution capacity per area. We also kept the bolls (from 15 days after anthesis) or main stem (at the early full bolling stage) in darkness for comparison with non-darkened controls. Darkening the bolls and main stem reduced the boll weight by 24.1 and 9%, respectively, and the seed weight by 35.9 and 16.3%, respectively. We conclude that non-foliar organs significantly contribute to the yield at the late growth stage.  相似文献   
47.
48.
We developed a quantitative strategy, named secretome-derived isotopic tag (SDIT), to concurrently identify and quantify the adipocyte-secreted plasma proteins from normal and high-fat-diet (HFD) induced obese mice, based on the application of isotope-labeled secreted proteins from cultured mouse adipocytes as internal standards. We detected 197 proteins with significant changes between normal and obese mice plasma. Importantly, a novel adipocyte-secreted plasma protein, apolipoprotein C-I (apoC-I), significantly increased in the obese mice plasma. The expression and secretion of adipocyte apoC-I was detected in differentiated 3T3-L1 and primary rat adipocytes. Our in vitro experiments proved that functional Golgi apparatus was required for apoC-I secretion. Additionally, obese mice had increased apoC-I production in adipose tissue. Population survey of 367 participants showed that the plasma level of apoC-I was significantly increased in obese individuals compared with healthy individuals. After multiple adjustments for age and sex, the odds ratios for risk factors of cardiovascular disease including high LDL cholesterol, hypercholesterolemia, and hypertriglyceridemia, respectively, were used to compare the highest with the lowest apoC-I quartile. Taken together, our studies provide a novel strategy to concurrently identify and quantify tissue-specific secreted proteins. This strategy can be used to identify the largest global characterization of adipocyte-derived plasma proteome and provides a potential disease-related biomarker for clinical diagnoses. By selectively analyzing adipocyte-secreted proteins in plasma from obese vs lean murine and/or human subjects, we discovered that apoC-I is an adipocyte-secreted plasma protein and a predictive marker for cardiovascular disease.  相似文献   
49.
50.
Chen XQ  Wang B  Wu C  Pan J  Yuan B  Su YY  Jiang XY  Zhang X  Bao L 《Cell research》2012,22(4):677-696
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号