Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D80DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D80DDG in NS2B on protease activity and viral replication, the negatively charged region D80DD and the conserved residue G83 of NS2B were mutated (D80DD/E80EE, D80DD/K80KK, D80DD/A80AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D80DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D80DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3. 相似文献
Necroptosis is a programmed necrosis that is mediated by receptor-interacting protein kinases RIPK1, RIPK3 and the mixed lineage kinase domain-like protein, MLKL. Necroptosis must be strictly regulated to maintain normal tissue homeostasis, and dysregulation of necroptosis leads to the development of various inflammatory, infectious, and degenerative diseases. Ubiquitylation is a widespread post-translational modification that is essential for balancing numerous physiological processes. Over the past decade, considerable progress has been made in the understanding of the role of ubiquitylation in regulating necroptosis. Here, we will discuss the regulatory functions of ubiquitylation in necroptosis signaling pathway. An enhanced understanding of the ubiquitylation enzymes and regulatory proteins in necroptotic signaling pathway will be exploited for the development of new therapeutic strategies for necroptosis-related diseases.
Opioids are frequently used analgesics, and emesis is a common opioid-induced adverse effect. Methylnaltrexone, a peripheral opioid antagonist, has the potential to block the undesired effects of opioids that are mediated by peripheral receptors while sparing the analgesic effect. We used a rat model of simulated emesis or pica to study if methylnaltrexone decreases morphine induced-kaolin consumption. We observed that after morphine administration, kaolin intake increased significantly compared to intake in the vehicle group, and the increase could be attenuated by ondansetron administration. Methylnaltrexone dose-dependently reduced kaolin ingestion induced by morphine. Morphine and methylnaltrexone did not significantly affect food intake and body weight in the experimental animals. Our data suggest that methylnaltrexone has therapeutic value in treating opioid-induced nausea and vomiting. 相似文献
Mitogen-activated protein (MAP) kinases are activated by dual-specificity kinases, termed MEKs. Using MEK2 as bait in yeast two-hybrid screening, besides c-Raf and KSR, A-Raf was identified as a novel partner that interacts with MEK2. This interaction was confirmed by in vitro binding assay. Further investigation indicates that regions critical for this interaction were located between residues 255 and 606 that represent the kinase domain of A-Raf. 相似文献
ObjectivesPeriplaneta americana extract (PAE) is proven to be promising in treating fever, wound healing, liver fibrosis, and cardiovascular disease. However, the role of PAE in skeletal disorders remains unclear. This study investigated whether PAE regulates osteoclastic differentiation in vitro via the culture using RAW264.7 cells and bone marrow derived macrophages (BMDMs).Materials and MethodsRAW264.7 cells and BMDMs were cultured and induced for osteoclastic differentiation supplementing with different concentrations of PAE (0, 0.1, 1, and 10 mg/mL). Cell counting kit‐8 (CCK‐8) assay was used to detect the cytotoxicity and cell proliferation. TRAP staining, actin ring staining, real‐time quantitative PCR (RT‐qPCR), and bone resorption activity test were performed to detect osteoclastic differentiation. RT‐qPCR and enzyme‐linked immunosorbent assay (ELISA) were conducted to assay the expression and secretion of inflammatory factors. RNA sequencing (RNA‐seq) and western blot analysis were carried out to uncover the underlying mechanism.ResultsCCK‐8 results showed that 10 mg/mL and a lower concentration of PAE did not affect cell proliferation. RT‐qPCR analysis verified that PAE down‐regulated the osteoclastic genes Nfatc1, Ctsk, and Acp5 in macrophages. Moreover, PAE restrained the differentiation, formation, and function of osteoclasts. Besides, RT‐qPCR and ELISA assays showed that PAE decreased inflammatory genes expression and reduced the secretion of inflammatory factors, including IL1β, IL6, and TNFα. Subsequent RNA‐seq analysis identified possible genes and signaling pathways of PAE‐mediated osteoclastogenesis suppression.ConclusionsOur study indicates that PAE has inhibitive effects on osteoclastogenesis and may be a potential therapeutic alternative for bone diseases.Periplaneta americana extract (PAE), the animal medicine material extracted from the insects Periplaneta americana, is proven to possess a variety of pharmacological functions. However, the role of PAE in skeletal disorders remains unclear. In this study, we found that PAE decreased osteoclast genes expression Nfatc1, Ctsk, and Acp5 in macrophages. Besides, PAE restrained the differentiation, formation, and function of osteoclasts. Moreover, PAE suppressed the LPS‐induced inflammation. Subsequent RNA‐seq analysis identified the signaling pathways of PAE‐mediated osteoclastogenesis suppression. Our study indicated that PAE has inhibitive effects on osteoclastic differentiation and may be a potential therapeutic Chinese medicine for bone diseases. 相似文献
Genetic variation and population structure in Portunus trituberculatus along the coast of China were revealed according to 617 bp of mitochondrial DNA control region. 90 polymorphic sites defined
53 distinct haplotypes, showing a moderately high diversity among 72 individuals sampled from eight localities. Neighbor-joining
tree, statistics analyses of gene flow and genetic differentiation index indicated two populations from Beihai and Laizhou
had differentiated. The population from Yingkou, Dandong, Laizhou and Beihai had smaller genetic diversity compared to that
from Ningbo, Lianyungang, Qingdao and Japan according to the genetic distance. And mantel test showed significant positive
correlation between genetic distance and geographic distance for P.trituberculatus. TCS parsimony network suggested that all the animals sampled were probably the result of recent divergence from a common
ancestral haplotype but for Laizhou population. Moreover, the haplotype distribution appeared to correlate with a recent colonization
followed by localized genetic differentiation. Mismatch distribution results suggested that Ningbo, Yingkou, Qingdao, Lianyungang
and Japan populations, particularly Dandong population had experienced a sudden demographic or spatial expansion. The Pleistocene
glaciations might contribute to this process. 相似文献
Ubiquitin-like modifications are macromolecular chemistry for which our understanding of the enzymatic mechanisms is lacking. Most E3 ligases in ubiquitin-like modifications do not directly participate in chemistry but are thought to confer allosteric effects; however, the nature of the allosteric effects has been elusive. Recent molecular dynamics simulations suggested that an E3 binding enhances the population of the conformational states of the E2·SUMO thioester that favor reactions. In this study, we conducted the first temperature-dependent enzyme kinetic analysis to investigate the role of an E3 on activation entropy and enthalpy. The small ubiquitin-like modifier (SUMO) E3, RanBP2, confers unusually large, favorable activation entropy to lower the activation energy of the reaction. Mutants of RanBP2, designed to alter the flexibilities of the E2·SUMO thioester, showed a direct correlation of their favorable entropic effects with their ability to restrict the conformational flexibility of the E2·SUMO thioester. While the more favorable activation entropy is consistent with the previously suggested role of E3 in conformational selection, the large positive entropy suggests a significant role of solvent in catalysis. Indeed, molecular dynamics simulations in explicit water revealed that the more stable E2·SUMO thioester upon E3 binding results in stabilization of a large number of bound water molecules. Liberating such structured water at the transition state can result in large favorable activation entropy but unfavorable activation enthalpy. The entropy-driven mechanism of the E3 is consistent with the lack of structural conservation among E3s despite their similar functions. This study also illustrates how proteins that bind both SUMO and E2 can function as E3s and how intrinsically unstructured proteins can enhance macromolecular chemistry in addition to their known advantages in protein--protein interactions. 相似文献
The administration of ACEI/ARB (angiotensin-converting enzyme inhibitors/Angiotension II receptor blockers) in COVID-19 (coronavirus disease 2019) patients with hypertension exhibits a lower risk of mortality compared with ACEI/ARB non-users. In this context, an important question arises: is ACEI or ARB more suitable for the treatment of hypertensive COVID-19 patients? Taken into consideration the following four rationales, ARB may offer a more significant benefit than ACEI for the short-term treatment of hypertensive COVID-19 patients: 1. ACEI has no inhibition on non-ACE-mediated Ang II production under infection conditions, whereas ARB can function properly regardless of how Ang II is produced; 2. ACEI-induced bradykinin accumulation may instigate severe ARDS while ARB has no effects on kinin metabolism; 3. ARB alleviates viscous sputa production and inflammatory reaction significantly in contrast to ACEI; 4. ARB may attenuate the lung fibrosis induced by mechanical ventilation in severe patients and improve their prognosis significantly compared with ACEI. To examine the advantages of ARB over ACEI on hypertensive COVID-19 patients, retrospective case-control studies comparing the clinical outcomes for COVID-19 patients receiving ARB or ACEI treatment is strikingly needed in order to provide guidance for the clinical application. 相似文献