首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23473篇
  免费   1988篇
  国内免费   2341篇
  27802篇
  2024年   77篇
  2023年   365篇
  2022年   813篇
  2021年   1350篇
  2020年   918篇
  2019年   1141篇
  2018年   1070篇
  2017年   734篇
  2016年   1071篇
  2015年   1533篇
  2014年   1767篇
  2013年   1984篇
  2012年   2194篇
  2011年   2004篇
  2010年   1168篇
  2009年   1120篇
  2008年   1205篇
  2007年   1033篇
  2006年   979篇
  2005年   654篇
  2004年   650篇
  2003年   575篇
  2002年   470篇
  2001年   374篇
  2000年   314篇
  1999年   296篇
  1998年   259篇
  1997年   206篇
  1996年   186篇
  1995年   165篇
  1994年   136篇
  1993年   110篇
  1992年   162篇
  1991年   105篇
  1990年   85篇
  1989年   87篇
  1988年   63篇
  1987年   53篇
  1986年   47篇
  1985年   52篇
  1984年   30篇
  1983年   20篇
  1982年   27篇
  1981年   17篇
  1980年   13篇
  1979年   20篇
  1978年   14篇
  1975年   12篇
  1973年   12篇
  1968年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Wnt signaling plays critical roles in development of both tetrapod lung and fish swimbladder, which are the two evolutionary homologous organs. Our previous data reveal that down-regulation of Wnt signaling leads to defective swimbladder development. However, the effects of up-regulation of Wnt signaling on swimbladder development remain unclear. By knockdown of the Wnt protein inhibitory gene wif1, we demonstrated that up-regulation of Wnt signaling also resulted in perturbed development of the swimbladder. Specifically, the growth of epithelium and mesenchyme was greatly inhibited, the smooth muscle differentiation was abolished, and the organization of mesothelium was disturbed. Furthermore, our data reveal that it is the reduced cell proliferation, but not enhanced apoptosis, that contributes to the disturbance of swimbladder development in wif1 morphants. Blocking Wnt signaling by the Wnt antagonist IWR-1 did not affect wif1 expression in the swimbladder, but complete suppression of Hedgehog signaling in smo-/- mutants abolished wif expression, consistent with our earlier report of a negative feedback regulation of Wnt signaling in the swimbladder by the Hedgehog signaling. Our works established the importance of proper level of Wnt signaling for normal development of swimbladder in zebrafish.  相似文献   
992.
The development of methyl-TROSY approaches and specific (13)C-(1)H labeling of Ile, Leu and Val methyl groups in highly deuterated proteins has made it possible to study high molecular weight proteins, either alone or in complexes, using solution nuclear magnetic resonance (NMR) spectroscopy. Here we present 2-dimensional (2D) and 3-dimensional (3D) NMR experiments designed to achieve complete separation of the methyl resonances of Val and Leu, labeled using the same precursor, α-ketoisovalerate or acetolactate. The 2D experiment can further select the methyl resonances of Val or Leu based on the C(α) or C(β) chemical shift values of Val or Leu, respectively. In the 3D spectrum, the methyl cross peaks of Val and Leu residues have opposite signs; thus, not only can the residue types be easily distinguished, but the methyl pairs from the same residue can also be identified. The feasibility of this approach, implemented in both 2D and 3D experiments, has been demonstrated on an 82 kDa protein, malate synthase G. The methods developed in this study will reduce resonance overlaps and also facilitate structure-guided resonance assignments.  相似文献   
993.
Translation elongation factor 1A (eEF1A) is a factor critically involved in the process of protein synthesis. The activity of eEF1A has been shown by several studies to be regulated by post-translational modifications such as phosphorylation and dephosphorylation. However, until now less research has focused on other post-translational modifications of eEF1A, especially acetylation. In this report, we provide new evidence for the existence of eEF1A acetylation in PLC5 cells by immunoprecipitation and Western blotting. Using the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), we found that the deacetylation of eEF1A is mainly attributable to classes I and II HDAC rather than class III HDAC, and, furthermore, that the antitumour agent etoposide phosphate (VP 16) enhances the acetylation of eEF1A in a synergistic way with TSA. Our data suggest the possibility that the increased acetylation of eEF1A could be a new mechanism for the antitumour effect of etoposide.  相似文献   
994.
The Nrf2-Keap1 pathway is believed to be a critical regulator of the phase II defense system against oxidative stress. By activation of Nrf2, cytoprotective genes such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase (NQO-1) and γ-glutamyl-cysteine ligase (GCL) are induced. GCL-induced glutathione (GSH) production is believed to affect redox signaling, cell proliferation and death. We here report that tert-butyl hydroperoxide (t-BHP)-induced GSH reduction led to mitochondrial membrane potential loss and apoptosis in cultured human retinal pigment epithelial cells from the ARPE-19 cell line. Hydroxytyrosol (HT), a natural phytochemical from olive leaves and oil, was found to induce phase II enzymes and GSH, thus protect t-BHP-induced mitochondrial dysfunction and apoptosis. Depletion of GSH by buthionine-[S,R]-sulfoximine enhanced t-BHP toxicity and abolished HT protection. Overexpression of Nrf2 increased GSH content and efficiently protected t-BHP-induced mitochondrial membrane potential loss. Meanwhile, HT-induced GSH enhancement and induction of Nrf2 target gene (GCLc, GCLm, HO-1, NQO-1) messenger RNA (mRNA) were inhibited by Nrf2 knockdown, suggesting that HT increases GSH through Nrf2 activation. In addition, we found that HT was able to activate the PI3/Akt and mTOR/p70S6-kinase pathways, both of which contribute to survival signaling in stressed cells. However, the effect of HT was not inhibited by the PI3K inhibitor LY294002. Rather, c-Jun N-terminal kinase (JNK) activation was found to induce p62/SQSTM1 expression, which is involved in Nrf2 activation. Our study demonstrates that Nrf2 activation induced by the JNK pathway plays an essential role in the mechanism behind HT's strengthening of the antiapoptotic actions of the endogenous antioxidant system.  相似文献   
995.
Mercury is a highly toxic metal that can cause significant harm to humans and aquatic ecosystems. This paper describes a novel approach for mercury (Hg(2+)) ion detection by using label-free oligonucleotide probes and Escherichia coli exonuclease I (Exo I) in a microfluidic electrophoretic separated platform. Two single-stranded DNAs (ssDNA) TT-21 and TT-44 with 7 Thymine-Thymine mispairs are employed to capture mercury ions. Due to the coordination structure of T-Hg(2+)-T, these ssDNAs are folded into hairpin-like double-stranded DNAs (dsDNA) which are more difficult to be digested by Exo I, as confirmed by polyacrylamide gel electrophoresis (PAGE) analysis. A series of microfluidic capillary electrophoretic separation studies are carried out to investigate the effect of Exo I and mercury ion concentrations on the detected fluorescence intensity. This method has demonstrated a high sensitivity of mercury ion detection with the limit of detection around 15 nM or 3 ppb. An excellent selectivity of the probe for mercury ions over five interference ions Fe(3+), Cd(2+), Pb(2+), Cu(2+) and Ca(2+) is also revealed. This method could potentially be used for mercury ion detection with high sensitivity and reliability.  相似文献   
996.
In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications.  相似文献   
997.
A solid-state electrochemiluminescence (ECL) aptasensor based on target-induced aptamer displacement for highly sensitive detection of thrombin was developed successfully using 4-(dimethylamino)butyric acid (DMBA)@PtNPs labeling as enhancer. Such a special aptasensor included three main parts: ECL substrate, ECL intensity amplification and target-induced aptamer displacement. The ECL substrate was made by modifying the complex of Pt nanoparticles (PtNPs) and tris(2,2-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) (Ru-PtNPs) onto nafion@multi-walled carbon nanotubes (nafion@MWCNTs) modified electrode surface. A complementary thrombin aptamer labeled by DMBA@PtNPs (Aptamer II) acted as the ECL intensity amplification. The thrombin aptamer (TBA) was applied to hybridize with the labeled complementary thrombin aptamer, yielding a duplex complex of TBA-Aptamer II on the electrode surface. The introduction of thrombin triggered the displacement of Aptamer II from the self-assembled duplex into the solution and the association of inert protein thrombin on the electrode surface, decreasing the amount of DMBA@PtNPs and increasing the electron transfer resistance of the aptasensor and thus resulting large decrease in ECL signal. With the synergistic amplification of DMBA and PtNPs to Ru(bpy)(3)(2+) ECL, the aptasensor showed an enlarged ECL intensity change before and after the detection of thrombin. As a result, the change of ECL intensity has a direct relationship with the logarithm of thrombin concentration in the range of 0.001-30 nM. The detection limit of the proposed aptasensor is 0.4 pM. Thus, the approach is expected to open new opportunities for protein diagnostics in clinical as well as bioanalysis in general.  相似文献   
998.
999.
Necroptosis is a regulated caspase-independent cell death pathway with morphological features resembling passive non-regulated necrosis. Several diverse structure classes of necroptosis inhibitors have been reported to date, including a series of 3,3a,4,5-tetrahydro-2H-benz[g]indazoles (referred to as the Nec-3 series) displaying potent activity in cellular assays. However, evaluation of the tricyclic necroptosis inhibitor's stability in mouse liver microsomes indicated that they were rapidly degraded. A structure-activity relationship (SAR) study of this compound series revealed that increased liver microsomal stability could be accomplished by modification of the pendent phenyl ring and by introduction of a hydrophilic substituent (i.e., α-hydroxyl) to the acetamide at the 2-position of the tricyclic ring without significantly compromising necroptosis inhibitory activity. Further increases in microsomal stability could be achieved by utilizing the 5,5-dioxo-3-phenyl-2,3,3a,4-tetrahydro-[1]benzothiopyrano[4,3-c]pyrazoles. However, in this case necroptosis inhibitory activity was not maintained. Overall, these results provide a strategy for generating potent and metabolically stable tricyclic necrostatin analogs (e.g., 33, LDN-193191) potentially suitable for in vivo studies.  相似文献   
1000.
High-risk strains of human papillomaviruses (HPVs) cause nearly all cases of cervical cancer as well as a growing number of head and neck cancers. The oncogenicity of these viruses can be attributed to the activities of their two primary oncoproteins, E6 and E7. The E6 protein has among its functions the ability to prevent apoptosis of infected cells through its binding to FADD and caspase 8. A small molecule library was screened for candidates that could inhibit E6 binding to FADD and caspase 8. Flavonols were found to possess this activity with the rank order of myricetin > morin > quercetin > kaempferol = galangin ? (apigenin, 7-hydroxyflavonol, rhamnetin, isorhamnetin, geraldol, datiscetin, fisetin, 6-hydroxyflavonol). Counter screening, where the ability of these chosen flavonols to inhibit caspase 8 binding to itself was assessed, demonstrated that myricetin, morin and quercetin inhibited GST-E6 and His-caspase 8 binding in a specific manner. The structure–activity relationships suggested by these data are unique and do not match prior reports on flavonols in the literature for a variety of anticancer assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号