首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27259篇
  免费   2482篇
  国内免费   2978篇
  2024年   71篇
  2023年   369篇
  2022年   840篇
  2021年   1459篇
  2020年   1090篇
  2019年   1264篇
  2018年   1198篇
  2017年   889篇
  2016年   1207篇
  2015年   1794篇
  2014年   2059篇
  2013年   2221篇
  2012年   2640篇
  2011年   2398篇
  2010年   1448篇
  2009年   1356篇
  2008年   1514篇
  2007年   1290篇
  2006年   1252篇
  2005年   889篇
  2004年   802篇
  2003年   734篇
  2002年   601篇
  2001年   437篇
  2000年   376篇
  1999年   358篇
  1998年   287篇
  1997年   220篇
  1996年   190篇
  1995年   180篇
  1994年   169篇
  1993年   121篇
  1992年   158篇
  1991年   127篇
  1990年   93篇
  1989年   93篇
  1988年   71篇
  1987年   59篇
  1986年   49篇
  1985年   60篇
  1984年   35篇
  1983年   22篇
  1982年   28篇
  1981年   24篇
  1980年   17篇
  1979年   18篇
  1978年   20篇
  1976年   14篇
  1975年   22篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
301.
Psoralea corylifolia (P corylifolia) has been popularly applied in traditional Chinese medicine decoction for treating osteoporosis and promoting fracture healing since centuries ago. However, the bioactive natural components remain unknown. In this study, applying comprehensive two‐dimensional cell membrane chromatographic/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS) system, neobavaisoflavone (NBIF), for the first time, was identified for the bioaffinity with RAW 264.7 cells membranes from the extracts of P corylifolia. Here, we revealed that NBIF inhibited RANKL‐mediated osteoclastogenesis in bone marrow monocytes (BMMCs) and RAW264.7 cells dose dependently at the early stage. Moreover, NBIF inhibited osteoclasts function demonstrated by actin ring formation assay and pit‐formation assay. With regard to the underlying molecular mechanism, co‐immunoprecipitation showed that both the interactions of RANK with TRAF6 and with c‐Src were disrupted. In addition, NBIF inhibited the phosphorylation of P50, P65, IκB in NF‐κB pathway, ERK, JNK, P38 in MAPKs pathway, AKT in Akt pathway, accompanied with a blockade of calcium oscillation and inactivation of nuclear translocation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1). In vivo, NBIF inhibited osteoclastogenesis, promoted osteogenesis and ameliorated bone loss in ovariectomized mice. In summary, P corylifolia‐derived NBIF inhibited RANKL‐mediated osteoclastogenesis by suppressing the recruitment of TRAF6 and c‐Src to RANK, inactivating NF‐κB, MAPKs, and Akt signalling pathways and inhibiting calcium oscillation and NFATc1 translocation. NBIF might serve as a promising candidate for the treatment of osteoclast‐associated osteopenic diseases.  相似文献   
302.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   
303.
Indoleamine 2, 3-dioxygenase (IDO)-mediated regulation of tryptophan metabolism plays an important role in immune tolerance in transplantation, but it has not been elucidated which mechanism specifically induces the occurrence of immune tolerance. Our study revealed that IDO exerts immunosuppressive effects through two pathways in mouse heart transplantation, ‘tryptophan depletion’ and ‘tryptophan metabolite accumulation’. The synergism between IDO+DC and TC (tryptophan catabolic products) has stronger inhibitory effects on T lymphocyte proliferation and mouse heart transplant rejection than the two intervention factors alone, and significantly prolong the survival time of donor-derived transplanted skin. This work demonstrates that the combination of IDO+DC and TC can induce immune tolerance to a greater extent, and reduce the rejection of transplanted organs.  相似文献   
304.
The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.  相似文献   
305.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   
306.
ObjectivesDegenerative disc disease is characterized by an enhanced breakdown of its existing nucleus pulposus (NP) matrix due to the dysregulation of matrix enzymes and factors. Ubiquitin‐specific protease 15 (USP15) is reported to be abnormal in certain human diseases. However, its role in NP degeneration remains unclear. Therefore, we aimed to explore the function of USP15 in degenerative NP cell specimens.MethodsWe induced gene silencing and overexpression of USP15 in degenerative NP cells using RNA interference (RNAi) and a lentiviral vector, respectively. qRT‐PCR and Western blotting were used to determine gene and protein expression levels. Cell apoptosis was analysed via flow cytometry. Protein interaction was examined by performing a co‐immunoprecipitation assay. Furthermore, the PI3K inhibitor LY294002 and agonist IGF‐1 were used to investigate the link between USP15 and AKT in NP degeneration.ResultsWe found that USP15 was up‐regulated in degenerative NP cells and that its overexpression accelerated the process of apoptosis. Moreover, USP15 expression levels negatively correlated with AKT phosphorylation in degenerative NP cells. Furthermore, targeting and silencing USP15 with miR‐338‐3p and studying its interaction with FK506‐binding protein 5 (FKBP5) revealed enhancement of FKBP5 ubiquitination, indicating that USP15 is a component of the FKBP5/AKT signalling pathway in degenerative NP cells.ConclusionsOur results show that USP15 exacerbates NP degradation by deubiquitinating and stabilizing FKBP5. This in turn results in the suppression of AKT phosphorylation in degenerative NP cells. Therefore, our study provides insights into the understanding of USP15 function as a potential molecule in the network of NP degeneration.  相似文献   
307.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   
308.
Coronary artery disease (CAD) is one of the biggest threats to human life. Circulating microRNAs (miRNAs) have been reported to be linked to the pathogenesis of CAD, indicating the possible role in CAD diagnosis. The present study aimed to explore the expression profile of plasma miRNAs and estimate their value in diagnosis for CAD. 67 Non‐CAD control subjects and 88 CAD patients were enrolled. We conducted careful evaluation by RT‐PCR analysis, Spearman rank correlation coefficients analysis, Receiver Operating Characteristic (ROC) curves analysis and so on. The plasma levels of six miRNAs known to be related to CAD were measured and three of them showed obvious expression change. Circulating miR‐29a‐3p, miR‐574‐3p and miR‐574‐5p were all significantly increased. ROC analysis revealed the probability of the three miRNAs as biomarkers with AUCs (areas under the ROC curve) of 0.830, 0.792 and 0.789, respectively. They were significantly correlated with each other in CAD patients, suggesting the possibility of joint diagnosis. The combined AUC was 0.915, much higher than each single miRNA. Therefore, our study revealed three promising biomarkers for early diagnosis of CAD. The combination of these miRNAs may act more effectively than individual ones for CAD diagnosis.  相似文献   
309.
Sepiapterin reductase, a homodimer composed of two subunits, plays an important role in the biosynthesis of tetrahydrobiopterin. Furthermore, sepiapterin reductase exhibits a wide distribution in different tissues and is associated with many diseases, including brain dysfunction, chronic pain, cardiovascular disease and cancer. With regard to drugs targeting sepiapterin reductase, many compounds have been identified and provide potential methods to treat various diseases. However, the underlying mechanism of sepiapterin reductase in many biological processes is unclear. Therefore, this article summarized the structure, distribution and function of sepiapterin reductase, as well as the relationship between sepiapterin reductase and different diseases, with the aim of finding evidence to guide further studies on the molecular mechanisms and the potential clinical value of sepiapterin reductase. In particular, the different effects induced by the depletion of sepiapterin reductase or the inhibition of the enzyme suggest that the non‐enzymatic activity of sepiapterin reductase could function in certain biological processes, which also provides a possible direction for sepiapterin reductase research.  相似文献   
310.
Despite the widespread use of antiplatelets and anticoagulants, women with antiphospholipid syndrome (APS) may face pregnancy complications associated with placental dysplasia. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many autoimmune diseases, including vascular APS; however, their role in obstetric APS is unclear. Herein, we investigated the role of NETs by quantifying cell‐free DNA and NET marker levels. Live‐cell imaging was used to visualize NET formation, and MAPK signalling pathway proteins were analysed. Cell migration, invasion and tube formation assays were performed to observe the effects of NETs on trophoblasts and human umbilical vein endothelial cells (HUVECs). The concentrations of cell‐free DNA and NETs in sera of pregnant patients with APS were elevated compared with that of healthy controls (HCs) matched to gestational week. APS neutrophils were predisposed to spontaneous NET release and IgG purified from the patients (APS‐IgG) induced neutrophils from HCs to release NETs. Additionally, APS‐IgG NET induction was abolished with inhibitors of reactive oxygen species, AKT, p38 MAPK and ERK1/2. Moreover, NETs were detrimental to trophoblasts and HUVECs. In summary, APS‐IgG‐induced NET formation deserves further investigation as a potential novel therapeutic target in obstetrical APS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号