首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1362篇
  免费   108篇
  国内免费   5篇
  2021年   24篇
  2020年   21篇
  2019年   17篇
  2018年   36篇
  2017年   32篇
  2016年   44篇
  2015年   64篇
  2014年   67篇
  2013年   94篇
  2012年   98篇
  2011年   85篇
  2010年   54篇
  2009年   38篇
  2008年   55篇
  2007年   54篇
  2006年   46篇
  2005年   44篇
  2004年   29篇
  2003年   29篇
  2002年   33篇
  2001年   29篇
  2000年   30篇
  1999年   19篇
  1998年   18篇
  1997年   9篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   16篇
  1991年   24篇
  1990年   16篇
  1989年   14篇
  1988年   19篇
  1987年   30篇
  1986年   21篇
  1985年   26篇
  1984年   17篇
  1983年   12篇
  1982年   15篇
  1981年   9篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1976年   8篇
  1974年   9篇
  1973年   14篇
  1972年   8篇
  1971年   8篇
  1970年   10篇
  1968年   8篇
排序方式: 共有1475条查询结果,搜索用时 15 毫秒
961.
Background aimsHematopoietic stem cell transplant (HSCT) is the treatment of choice for a proportion of patients with hematologic malignancies as well as for non-malignant diseases. However, viral infections, particularly Epstein–Barr virus (EBV), cytomegalovirus (CMV) and adenovirus (Ad), remain problematic after transplant despite the use of antiviral drugs. We have shown that cytotoxic T lymphocytes (CTL) generated against CMV-pp65, EBV and Ad antigens in a single culture are capable of controlling infections with all three viruses after HSCT. Although pp65-specific CTL have proved efficacious for the control of CMV infection, several reports highlight the importance of targeting additional CMV antigens.MethodsTo expand multivirus-specific T cells with activity against both CMV-pp65 and CMV-IE-1, peripheral blood mononuclear cells (PBMC) were transduced with the adenoviral vector (Ad5f35-IE-1-I-pp65). After 9–12 days the CTL were restimulated with autologous EBV-transformed B cells transduced with the same Ad vector.ResultsAfter 18 days in culture nine CTL lines expanded from less than 1.5 × 107 PBMC to a mean of 6.1 × 107 T cells that recognized CMV antigens pp65 [median 273 spot-forming cells (SFC), range 47–995] and IE-1 (median 154 SFC, range 11–505), the Ad antigens hexon (median 153 SFC, range 26–465) and penton (median 37 SFC, range 1–353), as well as EBV lymphoblastoid cell lines (median 55 SFC, range 9–301). Importantly, the T cells recognized at least two antigens per virus and lysed virus peptide-pulsed targets.ConclusionsCTL that target at least two antigens each of CMV, EBV and Ad should have clinical benefit with broad coverage of all three viruses and enhanced control of CMV infections compared with current protocols.  相似文献   
962.
963.
MutT enzymes prevent DNA damage by hydrolysis of 8-oxodGTP, an oxidized substrate for DNA synthesis and antimutagenic, anticarcinogenic, and antineurodegenerative functions of MutT enzymes are well established. MutT has been found in almost all kingdoms of life, including many bacterial species, yeasts, plants and mammals. However, a Caenorhabditis elegans MutT homologue was not previously identified. Here, we demonstrate that NDX-4 exhibits both hallmarks of a MutT-type enzyme with an ability to hydrolyze 8-oxodGTP and suppress the Escherichia coli mutT mutator phenotype. Moreover, we show that NDX-4 contributes to genomic stability in vivo in C. elegans. Phenotypic analyses of an ndx-4 mutant reveal that loss of NDX-4 leads to upregulation of key stress responsive genes that likely compensate for the in vivo role of NDX-4 in protection against deleterious consequences of oxidative stress. This discovery will enable us to use this extremely robust genetic model for further research into the contribution of oxidative DNA damage to phenotypes associated with oxidative stress.  相似文献   
964.
This review is a meta-analysis of data describing proteins regulated by morphine influence studied worldwide across last years administration. Up to date (July 2010), 15 studies concerning this subject have been published. Animal models, examined brain structures, the route of morphine administration and proteomic platforms used for identification of differentially expressed proteins were described. Standardization of obtained results allowed for creation of database of proteins, whose expression was altered by morphine administration (www.addiction-proteomics.org). Their analysis by tools available in Celera Panther Database was possible too. Proteins, which seem to be the most promising candidates for further research, due to their consistent appearance in different studies, were indicated. Created database may facilitate further studies by providing a possibility to compare results obtained during different experiments. At the end, dynamic picture of proteome after morphine administration, which emerges from the obtained results, is discussed and need for standardization of proteomics experiments is stressed. As meta-analysis is a very powerful tool for evaluation and comparison of multiple data. We believe this approach will be useful in the nearest future to extract vital information from a vast number of similar publications. Morphinome database created already by our group is a comfortable tool for validation and verification of new data received after morphine influence on proteomes investigations. It gives a chance for fast comparison of results without hours spent on life science literature mining.  相似文献   
965.

Background

In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates.

Results

The xylanases from Nonomuraea flexuosa (Nf Xyn11A) and from Thermoascus aurantiacus (Ta Xyn10A) were purified by heat treatment and gel permeation chromatography. Ta Xyn10A exhibited higher hydrolytic efficiency than Nf Xyn11A toward birchwood glucuronoxylan, insoluble oat spelt arabinoxylan and hydrothermally pretreated wheat straw, and it produced more reducing sugars. Oligosaccharides from xylobiose to xylopentaose as well as higher degree of polymerization (DP) xylooligosaccharides (XOSs), but not xylose, were released during the initial hydrolysis of xylans by Nf Xyn11A, indicating its potential for the production of XOS. The mode of action of Nf Xyn11A and Ta Xyn10A on glucuronoxylan and arabinoxylan showed typical production patterns of endoxylanases belonging to GH11 and GH10, respectively.

Conclusions

Because of its high catalytic activity and good thermostability, T. aurantiacus xylanase shows great potential for applications aimed at total hydrolysis of lignocellulosic materials for platform sugars, whereas N. flexuosa xylanase shows more significant potential for the production of XOSs.  相似文献   
966.
We report a case of fatal disseminated infection with Cryptococcus gattii in a patient from New Mexico. The patient had no history of recent travel to known C. gattii-endemic areas. Multilocus sequence typing revealed that the isolate belonged to the major molecular type VGIII. Virulence studies in a mouse pulmonary model of infection demonstrated that the strain was less virulent than other C. gattii strains. This represents the first documented case of C. gattii likely acquired in New Mexico.  相似文献   
967.
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial–mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator–activated receptor β/δ (PPARβ/δ) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARβ/δ stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARβ/δ regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARβ/δ regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARβ/δ, other epithelial–mesenchymal interactions may also be regulated in a similar manner.  相似文献   
968.
We identify Kette, a key regulator of actin polymerization, as a substrate for Drosophila protein tyrosine phosphatase PTP61F, as well as for dAbl tyrosine kinase. We further show that dAbl is a direct substrate for PTP61F. Therefore, Kette phosphotyrosine levels are regulated both directly and indirectly by PTP61F. Kette and PTP61F genetically interact in the regulation of F-actin organization in pupal eye discs, suggesting that tyrosine phosphorylation is essential for the proper regulation of Kette-mediated actin dynamics. This hypothesis was confirmed by demonstrating the loss of Kette-mediated F-actin organization and lamella formation in S2 cells in a Kette Y482F mutant in which the dAbl phosphorylation site was eliminated. Our results establish for the first time that PTP61F and dAbl ensure proper actin organization through the coordinated and reversible tyrosine phosphorylation of Kette.The actin cytoskeleton is regulated as a function of development, cell motility, intracellular transport, and the cell cycle by the polymerization of G-actin to F-actin (34). Correct regulation of actin cytoskeletal dynamics is essential to numerous differentiating and cellular processes in the nervous system (9) and musculature (42), among others. Actin polymerization is regulated by a number of proteins, among which is human NCK-associated protein 1 (NAP-1 [3, 4, 45]). It and its Drosophila orthologue, Kette (Hem in FlyBase), are critical components in both SCAR/WAVE and WASP complexes, which play essential roles in transducing Rac1 signals to initiate Arp2/3-dependent actin polymerization (6, 25, 40, 48). Murine NAP-1 interacts with NCK, an SH2-SH3 adaptor protein (4), and is essential for proper neuronal differentiation in the cortex (53). Neuronal differentiation and neural tube defects are observed in NAP-1 mutant mice, apparently due to reduced localization of WAVE1 to the cell membrane (53).In Drosophila, loss of kette activity specifically results in the accumulation of cytosolic F-actin (6). Kette protein associates with F-actin in the cytosol, but also at focal contact sites, where it apparently antagonizes SCAR/WAVE function and activates WASP-dependent actin polymerization (6). Despite its role in repressing SCAR/WAVE function, Kette serves to protect the complex from proteosome-mediated degradation and is critical to its intracellular localization (25). At the level of the organism, kette alleles affect axonal growth and pathfinding due to aberrant actin cytoskeleton formation, for example, altering crossing of the embryonic ventral midline by VUM neuron axons, as well as generating aberrant axonal projections in both motor and sensory neurons (21). Like mammalian NAP-1, Drosophila kette also interacts with the fly NCK orthologue, dreadlocks (dock) (21). Other evidence for the conserved interaction of Kette with signaling cascades is provided by the observation that kette mutant phenotypes are partially rescuable by overexpression of the small G protein Rac1 (21). The interaction of kette with dock suggests the possibility of tyrosine phosphorylation in the regulation of Kette activity, but no evidence supporting this hypothesis has been reported.Signaling by tyrosine phosphorylation in various metazoans controls numerous processes involved in cellular differentiation and proliferation. Many of the components regulating tyrosine phosphorylation have been identified and characterized using genetic, biochemical, molecular, and genomic sequence analyses (31). However, in contrast to the very well-characterized regulation of cellular processes by kinase-mediated tyrosine phosphorylation (15, 52), their regulation by dephosphorylation by protein tyrosine phosphatases (PTPs) has generally lagged behind. Although the functions of several receptor PTPs have been clearly defined as playing essential roles in axon guidance in both Drosophila (12, 23, 41, 47, 50) and mammals (44, 49), our understanding of nontransmembrane PTPs (NT-PTPs) is more limited. Only three of the eight putative Drosophila NT-PTPs have been characterized genetically. Corkscrew (Csw) acts as a downstream effector of various receptor protein tyrosine kinases (PTKs) and is essential for R7 photoreceptor development (35). PTP-enhancer of Ras1 has been characterized as an essential regulator antagonizing signaling mediated by Ras1, possibly through tyrosine dephosphorylation of mitogen-activated protein kinase (24, 36). More recently, it has been shown that PTP-meg participates in the establishment and maintenance of axon projections in the Drosophila brain (51). Other than these, the functions of Drosophila NT-PTPs remain largely unknown.PTP61F was originally identified as an NT-PTP that contains one phosphatase domain in the N-terminal region and five proline-rich motifs in the C-terminal tail (29). It is the Drosophila orthologue of mammalian PTP1B and T-cell PTP (TC-PTP) (1), which have been implicated in the regulation of signaling by both insulin (39) and JAK/STAT (33). Two PTP61F isoforms due to alternative splicing possess unique sequences at the C terminus, which determine either internal membrane-association (PTP61Fm) or nuclear localization (PTP61Fn) (29). To date, limited data suggest that PTP61F may participate in the downregulation of JAK/STAT signaling (2, 32), although the underlying mechanism remains unexplored. While PTP61F may recognize the adaptor proteins DOCK (10) and Abi (20) as potential substrates, the signaling pathways involving these interactions have not been clearly defined. In this study, we demonstrate for the first time that the regulation of Kette, and hence the localization and polymerization of the actin cytoskeleton, is achieved by reversible tyrosine phosphorylation under the control of both PTP61F and the PTK dAbl.  相似文献   
969.
The auxin/indoleacetic acid (Aux/IAA) proteins are negative regulators of the auxin response factors (ARFs) that regulate expression of auxin-responsive genes. The Aux/IAA proteins have four conserved domains. Domain II is responsible for the rapid degradation of these proteins. Degradation of the Aux/IAA proteins, mediated by a SCF(TIR1) E3 ubiquitin protein ligase complex, is critical for auxin-regulated gene expression. Using a steroid-hormone-inducible system, we had previously shown that a protein-stability-enhancing mutation in domain II of IAA1 (iaa1) impaired diverse auxin responses. Inhibition of hypocotyl elongation, leaf expansion, and stem elongation by overexpression of iaa1 suggested that cell enlargement and/or cell division might be affected. We here examined the effects of the domain II mutation on cellular anatomy using light microscopy. Our results show that overexpression of iaa1 in Arabidopsis significantly reduced cell length and cell number and affected cell shape in inflorescences and leaves in a dexamethasone (DEX)-dependent manner. These results suggest that IAA1 might be involved in cell elongation as well as in cell division in the aerial parts of Arabidopsis plants. In addition, the formation of both phloem and xylem in leaves and stems was also impaired in a DEX-dependent manner, indicating a potential involvement of IAA1 in vascular development.  相似文献   
970.
The regional distribution and quantitative frequency of pancreatic endocrine cells were demonstrated in the Korean golden frog (Rana plancyi chosenica Okada), which is known as a Korean endemic species, for the first time, by immunohistochemical methods using specific mammalian antisera to insulin, glucagon, somatostatin and human pancreatic polypeptide (PP). In the pancreas of the Korean golden frog, all four endocrine cell types were demonstrated. Insulin- and glucagon-positive cells were located in the pancreas as single cells or islet-like clusters with frequencies of 85.90±18.28 and 54.30±8.77/1,000/1,000 cells, respectively. Somatostatin-containing cells were also dispersed in the pancreas as single cells or clusters but in the case of clusters, they are exclusively situated in the marginal regions of insulin- or glucagon-positive cell clusters. Cells stained for somatostatin cell frequency was 15.50±3.10/1000 cells. PP-containing cells were also distributed as single cells or clusters with frequency of 53.40±11.96/1,000 cells. Clusters consisted of PP-positive cells are distributed as a core type and a marginally distributed type. Overall, there were 40.84±3.81% insulin-, 26.02±1.71% glucagon-, 7.63±2.09% somatostatin- and 25.51±3.26% PP-IR cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号