首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2315篇
  免费   233篇
  国内免费   5篇
  2022年   19篇
  2021年   44篇
  2020年   21篇
  2019年   24篇
  2018年   42篇
  2017年   34篇
  2016年   67篇
  2015年   97篇
  2014年   101篇
  2013年   115篇
  2012年   186篇
  2011年   165篇
  2010年   114篇
  2009年   116篇
  2008年   113篇
  2007年   118篇
  2006年   81篇
  2005年   77篇
  2004年   96篇
  2003年   77篇
  2002年   65篇
  2001年   81篇
  2000年   65篇
  1999年   59篇
  1998年   21篇
  1997年   22篇
  1996年   18篇
  1995年   11篇
  1994年   14篇
  1993年   17篇
  1992年   41篇
  1991年   27篇
  1990年   28篇
  1989年   43篇
  1988年   30篇
  1987年   28篇
  1986年   14篇
  1985年   26篇
  1984年   20篇
  1983年   14篇
  1982年   15篇
  1981年   15篇
  1980年   22篇
  1979年   35篇
  1978年   20篇
  1977年   10篇
  1976年   11篇
  1975年   9篇
  1974年   24篇
  1973年   14篇
排序方式: 共有2553条查询结果,搜索用时 46 毫秒
121.
The hybrid sensor SagS plays a central role in the formation of Pseudomonas aeruginosa biofilms, by enabling the switch from the planktonic to the biofilm mode of growth and by facilitating the transition of biofilm cells to a highly tolerant state. In this study, we examined the importance of the SagS key amino acid residues associated with biofilm formation (L154) and antibiotic tolerance (D105) in P. aeruginosa virulence. Recombinant P. aeruginosa ΔsagS and ΔsagS chromosomally expressing wild‐type sagS, or its two variants D105A and L154A, were tested for their potential to form biofilms and cause virulence in plants and mouse models of acute and chronic pneumonia. Although mutation of sagS did not alter P. aeruginosa virulence during acute infections, a significant difference in pathogenicity of sagS mutants was observed during chronic infections, with the L154A variant showing reduced bacterial loads in the chronic pneumonia model, while interference with the D105 residue enhanced the susceptibility of P. aeruginosa biofilms during tobramycin treatment. Our findings suggest that interference with the biofilm or tolerance regulatory circuits of SagS affects P. aeruginosa pathogenicity in chronic but not acute infections, and reveal SagS to be a promising new target to treat P. aeruginosa biofilm infections.  相似文献   
122.
123.
124.
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.  相似文献   
125.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   
126.
127.
In this review, we present our current understanding of peripartum cardiomyopathy (PPCM) based on reports of the incidence, diagnosis and current treatment options. We summarise opinions on whether PPCM is triggered by vascular and/or hormonal causes and examine the influence of comorbidities such as preeclampsia. Two articles published in 2021 strongly support the hypothesis that PPCM may be a familial disease. Using large cohorts of PPCM patients, they summarised the available genomic DNA sequence data that are expressed in human cardiomyocytes. While PPCM is considered a disease predominately affecting the left ventricle, there are data to suggest that some cases also involve right ventricular failure. Finally, we conclude that there is sufficient evidence to warrant an RNAseq investigation and that this would be most informative if performed at the cardiomyocytes level rather than analysing genomic DNA from the peripheral circulation. Given the rarity of PPCM, the combined resources of international human heart tissue biobanks have assembled 30 ventricular tissue samples from PPCM patients, and we are actively seeking to enlarge this patient base by collaborating with human heart tissue banks and research laboratories who would like to join this endeavour.  相似文献   
128.
129.
Our studies suggest a tripartite structure for the 60-kDa allergen of Bermuda grass pollen (BG60) including a short N-terminal segment, a FAD-binding domain, and a C-terminal domain. The lower molecular weight isoallergens lack the N-terminal segment. The higher protease susceptibility and the lower melting temperature of approximately 20 degrees C of the lower molecular weight isoforms suggest that the N-terminal segment is essential for a compact structure. Database screening reveals that the protease-digested peptide sequences (approximately 180 residues in total) share 40% identity with the plant berberine bridge enzymes. In particular, a 24-residue peptide sequence displays high similarity to a conserved FAD-binding motif. The spectroscopic and SDS-PAGE analyses suggest that the cofactor FAD is covalently linked to the central domain. Therefore, we conclude that BG60 is identified as the first flavinylated allergen.  相似文献   
130.
A G Lau  R A Hall 《Biochemistry》2001,40(29):8572-8580
PDZ domains bind to the carboxyl-termini of target proteins, and some PDZ domains are capable of oligomerization to facilitate the formation of intracellular signaling complexes. The Na(+)/H(+) exchanger regulatory factor (NHERF-1; also called "EBP50") and its relative NHERF-2 (also called "E3KARP", "SIP-1", and "TKA-1") both have two PDZ domains. We report here that the PDZ domains of NHERF-1 and NHERF-2 bind specifically to each other but not to other PDZ domains. Purified NHERF-2 PDZ domains associate with each other robustly in the absence of any associated proteins, but purified NHERF-1 PDZ domains associate with each other only weakly when examined alone. The oligomerization of the NHERF-1 PDZ domains is greatly facilitated when they are bound with carboxyl-terminal ligands, such as the carboxyl-termini of the beta(2)-adrenergic receptor or the platelet-derived growth factor receptor. Oligomerization of full-length NHERF-1 is also enhanced by mutation of serine 289 to aspartate (S289D), which mimics the phosphorylated form of NHERF-1. Co-immunoprecipitation experiments with differentially tagged versions of the NHERF proteins reveal that NHERF-1 and NHERF-2 form homo- and hetero-oligomers in a cellular context. A point-mutated version of NHERF-1 (S289A), which cannot be phosphorylated on serine 289, exhibits a reduced capacity for co-immunoprecipitation from cells. These studies reveal that both NHERF-1 and NHERF-2 can oligomerize, which may facilitate NHERF-mediated formation of cellular signaling complexes. These studies furthermore reveal that oligomerization of NHERF-1, but not NHERF-2, is highly regulated by association with other proteins and by phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号