首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4786篇
  免费   434篇
  国内免费   4篇
  5224篇
  2022年   44篇
  2021年   75篇
  2020年   26篇
  2019年   39篇
  2018年   63篇
  2017年   48篇
  2016年   113篇
  2015年   242篇
  2014年   254篇
  2013年   317篇
  2012年   435篇
  2011年   383篇
  2010年   201篇
  2009年   176篇
  2008年   235篇
  2007年   244篇
  2006年   232篇
  2005年   211篇
  2004年   199篇
  2003年   172篇
  2002年   162篇
  2001年   148篇
  2000年   136篇
  1999年   106篇
  1998年   51篇
  1997年   39篇
  1996年   40篇
  1995年   30篇
  1994年   30篇
  1993年   31篇
  1992年   70篇
  1991年   70篇
  1990年   59篇
  1989年   61篇
  1988年   58篇
  1987年   60篇
  1986年   37篇
  1985年   20篇
  1984年   31篇
  1983年   22篇
  1982年   14篇
  1981年   17篇
  1979年   26篇
  1978年   23篇
  1977年   14篇
  1976年   17篇
  1975年   18篇
  1974年   23篇
  1973年   22篇
  1972年   11篇
排序方式: 共有5224条查询结果,搜索用时 15 毫秒
151.
152.
In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis.  相似文献   
153.
Death-associated protein kinase (DAPK) is a key player in several modes of neuronal death/injury and has been implicated in the late-onset Alzheimer's disease (AD). DAPK promotes cell death partly through its effect on regulating actin cytoskeletons. In this study, we report that DAPK inhibits microtubule (MT) assembly by activating MARK/PAR-1 family kinases MARK1/2, which destabilize MT by phosphorylating tau and related MAP2/4. DAPK death domain, but not catalytic activity, is responsible for this activation by binding to MARK1/2 spacer region, thereby disrupting an intramolecular interaction that inhibits MARK1/2. Accordingly, DAPK(-/-) mice brain displays a reduction of tau phosphorylation and DAPK enhances the effect of MARK2 on regulating polarized neurite outgrowth. Using a well-characterized Drosophila model of tauopathy, we show that DAPK exerts an effect in part through MARK Drosophila ortholog PAR-1 to induce rough eye and loss of photoreceptor neurons. Furthermore, DAPK enhances tau toxicity through a PAR-1 phosphorylation-dependent mechanism. Together, our study reveals a novel mechanism of MARK activation, uncovers DAPK functions in modulating MT assembly and neuronal differentiation, and provides a molecular link of DAPK to tau phosphorylation, an event associated with AD pathology.  相似文献   
154.
IL-2, the first cytokine discovered with T cell growth factor activity, is now known to have pleiotropic effects on T cells. For example, it can promote growth, survival, and differentiation of Ag-selected cells, or facilitate Ag-induced cell death of T cells when Ag persists, and in vivo, it is thought to contribute to the regulation of the size of adaptive T cell response. IL-2 is deficient in HIV-1 infection and has been used in the management of HIV-1-infected individuals undergoing antiretroviral therapy. In this study, we investigated how continuous low-dose IL-2 affected the CD4+ and CD8+ T cell response induced by two inoculations of a canarypox recombinant SIV-based vaccine candidate in healthy macaques chronically infected with SIVmac251. These macaques had normal levels of CD4+ T cells at the beginning of antiretroviral therapy treatment. Vaccination in the presence of IL-2 significantly augmented Gag-specific CD8+ T cell responses, but actually reduced Gag-specific CD4+ T cell responses. Although IL-2 at low doses did not change the overall concentration of circulating CD4+ or CD8+ T cells, it expanded the frequency of CD4+CD25+ T cells. Depletion of the CD4+CD25+ T cells in vitro, however, did not result in a reconstitution of Gag-specific CD4+ responses or augmentation of SIV-specific CD8+ T cell responses. Thus, we conclude that the decrease in virus-specific CD4+ T cell response may be due to IL-2-promoted redistribution of cells from the circulation, or due to Ag-induced cell death, rather than suppression by a T regulatory population.  相似文献   
155.
156.
157.
Pellionia ronganensis sp. nov. (Urticaceae) is described and illustrated. Pellionia ronganensis resembles P. incisoserrata (H. Schroter) W. T. Wang, but is distinguished by leaves with obtuse theef, larger (6–10 mm long), linear stipules and tuberculate achenes.  相似文献   
158.
159.
Lanosterol and cycloartenol labelled with tritium at C-2, and 24-methylenecholesterol and fucosterol labelled with tritium at C-2 and C-4 were fed to actively growing cultures of Chlorella ellipsoidea. Lanosterol and cycloartenol were converted to each of the five desmethyl sterols of C. ellipsoidea. Lanosterol was more efficiently incorporated than cycloartenol.Although there was some evidence for the reduction of the 24-methylene group, it was apparent that 24-methylene-cholesterol was converted primarily to the C29 sterols, clionasterol and poriferasterol. Labelled fucosterol was reduced at the 24(28) double bond, producing clionasterol.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号