首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   21篇
  国内免费   39篇
  269篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   13篇
  2013年   18篇
  2012年   29篇
  2011年   19篇
  2010年   19篇
  2009年   9篇
  2008年   13篇
  2007年   22篇
  2006年   13篇
  2005年   12篇
  2004年   11篇
  2003年   13篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
211.
利用生殖细胞-体细胞无血清共培养模型研究了表皮生长因(EGF)和前列腺素E1(PGE1)对小鼠A型精原细胞增殖的影响.A型精原细胞在ITS培养液(添加胰岛素、转铁蛋白和亚硒酸钠的DMEM)中培养24 h后进行c-kit、EGF、表皮生长因子受体(EGFR)、环氧化酶-1(COX-1)及环氧化酶-2(COX-2)的免疫细胞化学检测,72 h后测定其形成集落教的情况.结果显示,A型精原细胞呈c-kit阳性,EGF、EGFR、COX-1及COX-2主要表达于精原细胞.EGF(10-7~10-6mol/L)或PGE,(10-8.10一mol/I_.)均可显著促进精原细胞集落的形成.此外,前列腺素(PG)受体拮抗剂SCl9220(10-6~10-5mol/L)可抑制PGE1对精原细胞的促增殖作用,COX-1抑制剂SC560(10-7~10-5mol/L)和COX-2抑制剂NS398(10-7~10-5mol/L)能抑制EGF促进精原细胞增殖的作用.因此,EGF可通过促进局部PG的产生而刺激精原细胞的增殖.  相似文献   
212.
213.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   
214.
Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects.  相似文献   
215.
钙(Ca2+)是多种信号途径的第二信使。Ca2+成像技术的成熟和发展为显示保卫细胞胞 质Ca2+浓度([Ca2+]cyt)的分布及外界刺激引起[Ca2+]cyt的变化模式提供了很好的研究工具,关于细胞内外Ca2+库释放Ca2+的机制也有了较清楚的认识。拟南芥突变体的研究使Ca2+ 信号上游分子及其排序更加明确,[Ca2+]cyt增加下游的磷酸化和去磷酸化 过程也是气孔关闭必需的生理过程。  相似文献   
216.
Messenger RNA degradation is a mechanism by which eukaryotic cells regulate gene expression and influence cell growth and differentiation. Many protooncogene, cytokine, and growth factor RNAs contain AU-rich element (AREs) in the 3'untranslated regions which enable them to be targeted for rapid degradation. To investigate the mechanism of ARE-mediated RNA stability, we demonstrate the expression and regulation of TNFalpha and IL-1beta mRNAs in LPS-stimulated macrophages. TNFalpha mRNA was rapidly induced by LPS and showed short half-life at 2-h induction, whereas IL-1beta mRNA was induced slowly and had longer half-life. Electrophoretic mobility shift assays showed that the LPS-induced destabilization factor tristetraprolin (TTP) could bind to TNFalpha ARE with higher affinity than to IL-1beta ARE. HuR was identified to interact with TNFalpha ARE to exert RNA stabilization activity. The expression and phosphorylation of TTP could be activated by p38 MAPK pathway during LPS stimulation. Moreover, ectopic expression with TTP and kinases in p38 pathway followed by biochemical assays showed that the activation of p38 pathway resulted in the phosphorylation of TTP and a decrease in its RNA-binding activity. The ARE-containing reporter assay presented that the p38 signal could reverse the inhibitory activity of TTP on IL-1beta ARE but not on TNFalpha ARE. The present results indicate that the heterogeneity of AREs from TNFalpha and IL-1beta could reflect distinct ARE-binding proteins to modulate their RNA expression.  相似文献   
217.
Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome.  相似文献   
218.

Background

To discover novel markers for improving the efficacy of pancreatic cancer (PC) diagnosis, the secretome of two PC cell lines (BxPC-3 and MIA PaCa-2) was profiled. UL16 binding protein 2 (ULBP2), one of the proteins identified in the PC cell secretome, was selected for evaluation as a biomarker for PC detection because its mRNA level was also found to be significantly elevated in PC tissues.

Methods

ULBP2 expression in PC tissues from 67 patients was studied by immunohistochemistry. ULBP2 serum levels in 154 PC patients and 142 healthy controls were measured by bead-based immunoassay, and the efficacy of serum ULBP2 for PC detection was compared with the widely used serological PC marker carbohydrate antigen 19-9 (CA 19-9).

Results

Immunohistochemical analyses revealed an elevated expression of ULPB2 in PC tissues compared with adjacent non-cancerous tissues. Meanwhile, the serum levels of ULBP2 among all PC patients (n = 154) and in early-stage cancer patients were significantly higher than those in healthy controls (p<0.0001). The combination of ULBP2 and CA 19-9 outperformed each marker alone in distinguishing PC patients from healthy individuals. Importantly, an analysis of the area under receiver operating characteristic curves showed that ULBP2 was superior to CA 19-9 in discriminating patients with early-stage PC from healthy controls.

Conclusions

Collectively, our results indicate that ULBP2 may represent a novel and useful serum biomarker for pancreatic cancer primary screening.  相似文献   
219.
We examined the underlying mechanisms involved in n-3 docosahexaenoic acid (DHA) inhibition of inflammation in EA.hy926 cells. The present results demonstrated that pretreatment with DHA (50 and 100 μM) inhibited tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule 1 (ICAM-1) protein, mRNA expression and promoter activity. In addition, TNF-α-stimulated inhibitory kappa B (IκB) kinase (IKK) phosphorylation, IκB phosphorylation and degradation, p65 nuclear translocation, and nuclear factor-κB (NF-κB) and DNA binding activity were attenuated by pretreatment with DHA. DHA triggered early-stage and transient reactive oxygen species (ROS) generation and significantly increased the protein expression of heme oxygenase 1 (HO-1), induced nuclear factor erythroid 2-related factor 2 (Nrf2) translocation to the nucleus and up-regulated antioxidant response element (ARE)-luciferase reporter activity. Moreover, DHA inhibited Nrf2 ubiquitination and proteasome activity. DHA activated Akt, p38 and ERK1/2 phosphorylation, and specific inhibitors of respective pathways attenuated DHA-induced Nrf2 nuclear translocation and HO-1 expression. Transfection with HO-1 siRNA knocked down HO-1 expression and partially reversed the DHA-mediated inhibition of TNF-α-induced p65 nuclear translocation and ICAM-1 expression. Importantly, we show for the first time that HO-1 plays a down-regulatory role in NF-κB nuclear translocation, and inhibition of Nrf2 ubiquitination and proteasome activity are involved in increased cellular Nrf2 level by DHA. In this study, we show that HO-1 plays a down-regulatory role in NF-κB nuclear translocation and that the protective effect of DHA against inflammation is partially via up-regulation of Nrf2-mediated HO-1 expression and inhibition of IKK/NF-κB signaling pathway.  相似文献   
220.
介绍了高等植物体脱落酸生物合成缺陷型突变体,生物合成途径,以及对脱落酸反应超敏感和不敏感的反应型突变体的研究进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号