首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35595篇
  免费   3242篇
  国内免费   5276篇
  44113篇
  2024年   122篇
  2023年   506篇
  2022年   1175篇
  2021年   1887篇
  2020年   1367篇
  2019年   1745篇
  2018年   1588篇
  2017年   1232篇
  2016年   1666篇
  2015年   2418篇
  2014年   2915篇
  2013年   3014篇
  2012年   3631篇
  2011年   3299篇
  2010年   2113篇
  2009年   1878篇
  2008年   2108篇
  2007年   1893篇
  2006年   1656篇
  2005年   1354篇
  2004年   1105篇
  2003年   1037篇
  2002年   871篇
  2001年   547篇
  2000年   474篇
  1999年   434篇
  1998年   283篇
  1997年   259篇
  1996年   230篇
  1995年   183篇
  1994年   178篇
  1993年   123篇
  1992年   132篇
  1991年   104篇
  1990年   78篇
  1989年   77篇
  1988年   61篇
  1987年   40篇
  1986年   52篇
  1985年   60篇
  1984年   23篇
  1983年   29篇
  1982年   29篇
  1981年   23篇
  1980年   10篇
  1979年   20篇
  1978年   9篇
  1974年   8篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The construction of inulin-assimilating and sorbitol-producing fusants was achieved by intergeneric protoplast fusion between Kluyveromyces sp. Y-85 and Saccharomyces cerevisiae E-15. The cells of parental strains were pretreated with 0.1% EDTA (w/v) and 2-mercaptoethanol (0.1%, v/v) and then exposed to 2.0% (w/v) Zymolase at 30 °C for 30–40 min. The optimized fusion condition demonstrated that with the presence of 30% (w/v) polyethylene glycol 6000 (PEG-6000) and 10 mM CaCl2 for 30 min, the fusion frequency reached 2.64 fusants/106 parental cells. The fusants were screened by different characters between two parental strains and further identified by DNA contents, inulinase activity and sorbitol productivity. One of the genetically stable fusants, Strain F27, reached a maximal sorbitol production of 4.87 g/100 ml under optimal fermentation condition.  相似文献   
52.

Background

Somatically acquired structure variations (SVs) and copy number variations (CNVs) can induce genetic changes that are directly related to tumor genesis. Somatic SV/CNV detection using next-generation sequencing (NGS) data still faces major challenges introduced by tumor sample characteristics, such as ploidy, heterogeneity, and purity. A simulated cancer genome with known SVs and CNVs can serve as a benchmark for evaluating the performance of existing somatic SV/CNV detection tools and developing new methods.

Results

SCNVSim is a tool for simulating somatic CNVs and structure variations SVs. Other than multiple types of SV and CNV events, the tool is capable of simulating important features related to tumor samples including aneuploidy, heterogeneity and purity.

Conclusions

SCNVSim generates the genomes of a cancer cell population with detailed information of copy number status, loss of heterozygosity (LOH), and event break points, which is essential for developing and evaluating somatic CNV and SV detection methods in cancer genomics studies.  相似文献   
53.
Arabidopsis thaliana has been widely used as a model plant in gene function analysis. However, its tiny flower and curved embryo sac make it difficult to study gene expression during megagametogenesis, fertilization, and early embryogenesis, especially in the screening of mutants from those developmental processes. The techniques currently available are sectioning and whole-mount clearing of ovules; however, sectioning is time consuming and laborious for quantitative analysis, and whole-mount clearing, makes clear cytological observation impossible. Reported here is a simple and efficient method based on enzymatic isolation of embryo sacs that enables both quantitative analysis and elaborate cytological observation for gene expression investigation and mutant screening.  相似文献   
54.
Dear Editor, Sex determination is one of the most fundamental develop-ment processes,as gender is the first and most important identity of human.In most mammals...  相似文献   
55.
In this study, we characterized the intratumoral expression of IL-17 and CD8(+) TILs in gastric adenocarcinoma patients after resection and determined the correlation between the survival probability of gastric adenocarcinoma patients and the expression of IL-17 in tumor. Expression of IL-17 and CD8 was assessed by immunohistochemistry, and the prognostic effects of intratumoral IL-17 expression and CD8(+) TILs were evaluated by Cox regression and Kaplan-Meier analysis. Immunohistochemical detection revealed the presence of IL-17 and CD8(+) cells in gastric adenocarcinoma tissue samples (90.6%, 174 out of 192 patients and 96.9%, 186 out of 192 patients, respectively). We have also found that intratumoral IL-17 expression was significantly correlated with age (p=0.004) and that the number of CD8(+)TILs was significantly correlated with UICC staging (p=0.012) and the depth of tumor invasion (p=0.022). The five-year overall survival probability among patients intratumorally expressing higher levels of IL-17 was significantly better than those expressing lower levels of IL-17 (p=0.036). Multivariate Cox proportional hazard analyses revealed that intratumoral IL-17 expression (HR: 0.521; 95% CI: 0.329-0.823; p=0.005) was an independent factor affecting the five-year overall survival probability. We conclude that low levels of intratumoral IL-17 expression may indicate poor prognosis in gastric adenocarcinoma patients.  相似文献   
56.
57.
Aluminium (Al) toxicity is the most important limiting factor for crop production in acid soil environments worldwide. In some plant species, application of magnesium (Mg(2+)) can alleviate Al toxicity. However, it remains unknown whether overexpression of magnesium transport proteins can improve Al tolerance. Here, the role of AtMGT1, a member of the Arabidopsis magnesium transport family involved in Mg(2+) transport, played in Al tolerance in higher plants was investigated. Expression of 35S::AtMGT1 led to various phenotypic alterations in Nicotiana benthamiana plants. Transgenic plants harbouring 35S::AtMGT1 exhibited tolerance to Mg(2+) deficiency. Element assay showed that the contents of Mg, Mn, and Fe in 35S::AtMGT1 plants increased compared with wild-type plants. Root growth experiment revealed that 100 microM AlCl(3) caused a reduction in root elongation by 47% in transgenic lines, whereas root growth in wild-type plants was inhibited completely. Upon Al treatment, representative transgenic lines also showed a much lower callose deposition, an indicator of increased Al tolerance, than wild-type plants. Taken together, the results have demonstrated that overexpression of ATMGT1 encoding a magnesium transport protein can improve tolerance to Al in higher plants.  相似文献   
58.
59.
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

  相似文献   

60.
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China''s temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号