首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21378篇
  免费   1503篇
  国内免费   17篇
  2023年   54篇
  2022年   185篇
  2021年   419篇
  2020年   251篇
  2019年   313篇
  2018年   537篇
  2017年   400篇
  2016年   687篇
  2015年   1130篇
  2014年   1234篇
  2013年   1402篇
  2012年   1837篇
  2011年   1713篇
  2010年   1112篇
  2009年   920篇
  2008年   1353篇
  2007年   1188篇
  2006年   1054篇
  2005年   977篇
  2004年   963篇
  2003年   783篇
  2002年   786篇
  2001年   633篇
  2000年   634篇
  1999年   422篇
  1998年   166篇
  1997年   129篇
  1996年   119篇
  1995年   88篇
  1994年   83篇
  1993年   69篇
  1992年   157篇
  1991年   125篇
  1990年   88篇
  1989年   103篇
  1988年   70篇
  1987年   65篇
  1986年   69篇
  1985年   53篇
  1984年   47篇
  1983年   38篇
  1982年   27篇
  1981年   24篇
  1978年   28篇
  1977年   23篇
  1976年   32篇
  1975年   29篇
  1973年   33篇
  1971年   23篇
  1969年   24篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
991.
PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1   总被引:5,自引:0,他引:5  
BACKGROUND: The mammalian target of rapamycin (mTOR) regulates cell growth and proliferation via the downstream targets ribosomal S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). We have identified phosphatidic acid (PA) as a mediator of mitogenic activation of mTOR signaling. In this study, we set out to test the hypotheses that phospholipase D 1 (PLD1) is an upstream regulator of mTOR and that the previously reported S6K1 activation by Cdc42 is mediated by PLD1. RESULTS: Overexpression of wild-type PLD1 increased S6K1 activity in serum-stimulated cells, whereas a catalytically inactive PLD1 exerted a dominant-negative effect on S6K1. More importantly, eliminating endogenous PLD1 by RNAi led to drastic inhibition of serum-stimulated S6K1 activation and 4E-BP1 hyperphosphorylation in both HEK293 and COS-7 cells. Knockdown of PLD1 also resulted in reduced cell size, suggesting a critical role for PLD1 in cell growth control. Using a rapamycin-resistant S6K1 mutant, Cdc42's action was demonstrated to be through the mTOR pathway. When Cdc42 was mutated in a region specifically required for PLD1 activation, its ability to activate S6K1 in the presence of serum was hindered. However, when exogenous PA was used as a stimulus, the PLD1-inactive Cdc42 mutant behaved similarly to the wild-type protein. CONCLUSIONS: Our observations reveal the involvement of PLD1 in mTOR signaling and cell size control, and provide a molecular mechanism for Cdc42 activation of S6K1. A new cascade is proposed to connect mitogenic signals to mTOR through Cdc42, PLD1, and PA.  相似文献   
992.
The protocol described in this paper offers a simple and rapid method for PCR analysis of transgenes using a restricted amount of fin tissue from small-sized transgenic fish. A simple preparation of fin lysate using a buffer containing a low concentration of an ionic detergent, SDS (0.01%), followed by neutralization with a second buffer containing higher concentrations of non-ionic detergents NP40 (2%) and Tween 20 (2%) consistently provides a reliable quantity of high-quality DNA template for PCR amplification of transgenes. Based on this protocol, transgenic fish can be clearly distinguished from non-transgenic fish using PCR in a rapid and reproducible manner. Tedious DNA purifications are avoided while fidelity of amplification and efficient identification of transgenic fish are maintained.  相似文献   
993.
994.
6,7-Dichloroquinoline-5,8-dione (1) was reacted with a number of 2-aminopyridine derivatives. Of the several possible products of this reaction, 4a,10,11-triazabenzo[3,2-a]fluorene-5,6-dione (6), produced by condensation and rearrangement, was obtained as the major product, and its structure was subsequently unambigously determined by X-ray crystallographic study. Ortho-quinones were produced via nucleophilic substitution at position C7, which was unexpected, considering that para-quinones were produced via C6 substitution in the reaction between compound 1 and ethyl acetoacetate in our previous work. Such unexpected nucleophilic substitution at C7 provides an effective, yet simple route, to the preparation of biologically active ortho-quinone derivatives.  相似文献   
995.
Assessment of nuclear status is important when a biopsied single blastomere is used for embryo sexing. In this study we investigated the nuclear status of blastomeres derived from 8- to 16-cell stage in vitro fertilised bovine embryos to determine the representativeness of a single blastomere for embryo sexing. In 24 embryos analysed, the agreement in sex determination between a biopsied single blastomere and a matched blastocyst by polymerase chain reaction (PCR) was 83.3%. To clarify the discrepancies, karyotypes of blastomeres in 8- to 16-cell stage bovine embryos were analysed. We applied vinblastine sulfate at various concentrations and for different exposure times for metaphase plate induction in 8- to 16-cell stage bovine embryos. The 1.0 mg/ml vinblastine sulfate treatment for 15 h was selected as the most effective condition for induction of a metaphase plate (> 45%). Among 22 embryos under these conditions, only 8 of 10 that had a normal diploid chromosome complement showed a sex chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of the embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four of another 11 embryos with a mixoploid chromosomal complement contained a haploid blastomere with a wrong sex chromosome (18.2%). In conclusion, assessment of nuclear status of 8- to 16-cell stage bovine embryos revealed that morphologically normal embryos had a considerable proportion of mixoploid blastomeres and sex chromosomal mosaicism; these could be the cause of discrepancies in the sex between biopsied single blastomeres and matched blastocysts by PCR.  相似文献   
996.
Cellular defense system, including glutathione, glutathione-related enzymes, and antioxidant and redox enzymes, may play crucial roles in the aging of aerobic organisms. To understand the physiological roles of these factors in the aging process, their levels were compared in the livers and brains of 5-week- and 9-month-old rats. GST activity was higher in livers and brains of 9-month-old rats than in those of 5-week-old rats, and brain catalase activity was about 2-fold higher. However, it was unchanged in the livers of the 9-month-old rats. gamma-Glutamylcysteine synthetase activity was about 2-fold higher in the brains of the older rats but again not in their livers. In contrast glutathione synthetase activity appeared to be lower in the livers of the older rats while GSH content did not change with age in livers and brains. Glutathione peroxidase activity was higher in 9-month-old rat brains, but lower in 9-month-old rat livers, while superoxide dismutase activity was higher in both tissues in the older rats. The activities of two redox enzymes, thiol-transferase and thioredoxin reductase, did not change with age, nor did that of glutathione reductase. These results indicate that levels of different cellular defense systems vary with age in an irregular manner.  相似文献   
997.
The recombinant gene was amplified from the chromosomal DNA of genetically-modified (GM) soybeans and identified as epsps encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) which renders glyphosate resistance. The epsps structural gene was introduced in the pET28(a) plasmid for its expression in Escherichia coli BL21(DE3). It was confirmed that the maximal productivity of the EPSPS protein was achieved when cultivating the recombinant strain in a LB broth for 2 h after supplementing 1 mM isopropylbeta-D-thiogalactopyranoside (IPTG) in a 2 h-culture broth. Since the expressed EPSPS protein was found as an insoluble form in the inclusion body, it was extracted by 6 M urea after sonication, and then purified through immobilized nickel-affinity column chromatography to isolate EPSPS having a molecular mass of 57 kDa. When incubated in simulated gastric fluid containing pepsin at pH 1.5, the purified EPSPS protein was completely digested within 1 min. In addition, the passive cutaneous anaphylaxis reaction of the purified EPSPS protein was not observed in the Sprague Dawley rat system that was administered either orally or subcutaneously. Furthermore, treatment of the EPSPS protein to the culture of the sensitized peritoneal mast cells, or unsensitized but antisera-labeled mast cells, showed neither a remarkable change in the histamine release nor a cytokine production, including interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-alpha). Thus, it can be concluded that the EPSPS protein in the GM soybean showed no significant allergenicity in the Sprague Dawley rats.  相似文献   
998.
Galphah (transglutaminase type II; tissue transglutaminase) is a bifunctional enzyme with transglutaminase (TGase) and guanosine triphosphatase (GTPase) activities. The GTPase function of Galphah is involved in hormonal signaling and cell growth while the TGase function plays an important role in apoptosis and in cross-linking extracellular and intracellular proteins. To analyze the regulation of these dual enzymatic activities we examined their calcium-dependence and thermal stability in enzymes from several cardiac sources (mouse heart, and normal, ischemic and dilated cardiomyopathic human hearts). The GTP binding activity of Galphah was markedly inhibited by Ca2+ whereas the TGase activity was strongly stimulated, suggesting that Ca2+ acts as a regulator, switching Galphah from a GTPase to a TGase. The TGase function of Galphah of both mouse and human hearts was more thermostable in the presence of Ca2+.  相似文献   
999.
Self-incompatibility is a genetically controlled process used to prevent self-pollination. We report here the characterization of pollen cDNA clones of Lycopersicon peruvianum, and the identification of a genotype-specific pollen factor involved in self-incompatibility. To identify the latter, differential mRNA display RT-PCR was performed on pollen cDNAs from S12Sa and S11Sa genotypes. We isolated four cDNA fragments expressed preferentially in S12Sa pollen, and screened a cDNA library from S12Sa pollen with the four cDNA fragments to isolate the corresponding full length cDNAs. One of the four isolated cDNAs encoded part of an actin depolymerizing factor protein that we named LpADF. LpADF is highly homologous to actin depolymerizing factors of Arabidopsis thaliana, Lilium longiflorum, and Zea mays. RNA blot analysis revealed that LpADF is only expressed in mature pollen of the S12Sa genotype, and is therefore a candidate pollen factor in the gametophyte self-incompatibility system of L. peruvianum.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号