首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112892篇
  免费   1961篇
  国内免费   2449篇
  2024年   31篇
  2023年   264篇
  2022年   665篇
  2021年   1154篇
  2020年   768篇
  2019年   979篇
  2018年   12511篇
  2017年   11103篇
  2016年   8245篇
  2015年   1913篇
  2014年   1798篇
  2013年   1865篇
  2012年   6078篇
  2011年   14338篇
  2010年   12872篇
  2009年   9032篇
  2008年   10782篇
  2007年   12165篇
  2006年   1075篇
  2005年   1143篇
  2004年   1466篇
  2003年   1457篇
  2002年   1142篇
  2001年   577篇
  2000年   479篇
  1999年   350篇
  1998年   215篇
  1997年   264篇
  1996年   200篇
  1995年   189篇
  1994年   168篇
  1993年   158篇
  1992年   202篇
  1991年   180篇
  1990年   153篇
  1989年   105篇
  1988年   107篇
  1987年   100篇
  1986年   63篇
  1985年   65篇
  1984年   50篇
  1983年   64篇
  1982年   23篇
  1981年   16篇
  1980年   15篇
  1972年   249篇
  1971年   280篇
  1965年   29篇
  1962年   24篇
  1944年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
The liver plays a central role in regulating lipid metabolism and facilitates efficient lipid utilization and storage. We discovered that a modest increase in maternal dietary fat in mice programs triglyceride storage in the liver of their developing offspring. The activation of this programming is not apparent, however, until several months later at the adult stage. We found that the perinatal programming of adult hepatic triglyceride storage was controlled by the eIF2α kinase GCN2 (EIF2AK4) in the brain of the offspring, which stimulates epigenetic modification of the Pparγ2 gene in the neonatal liver. Genetic ablation of Gcn2 in the offspring exhibited reduced hepatic triglyceride storage and repressed expression of the peroxisome proliferator-activated receptor gamma 2 (Pparγ2) and two lipid droplet protein genes, Fsp27 and Cidea. Brain-specific, but not liver-specific, Gcn2 KO mice exhibit these same defects demonstrating that GCN2 in the developing brain programs hepatic triglyceride storage. GCN2 and nutrition-dependent programming of Pparγ2 is correlated with trimethylation of lysine 4 of histone 3 (H3K4me3) in the Pparγ2 promoter region during neonatal development. In addition to regulating hepatic triglyceride in response to modest changes in dietary fat, Gcn2 deficiency profoundly impacts the severity of the obese-diabetic phenotype of the leptin receptor mutant (db/db) mouse, by reducing hepatic steatosis and obesity but exacerbating the diabetic phenotype. We suggest that GCN2-dependent perinatal programming of hepatic triglyceride storage is an adaptation to couple early nutrition to anticipated needs for hepatic triglyceride storage in adults. However, increasing the hepatic triglyceride set point during perinatal development may predispose individuals to hepatosteatosis, while reducing circulating fatty acid levels that promote insulin resistance.  相似文献   
842.

Background

Anaplastic thyroid carcinoma (ATC), a highly aggressive malignancy, has a poor prognosis, and the consensus on the most effective treatment is needed.

Methods

Clinical data from all ATC patients treated in our institution over a 30-year period (between May 1980 and May 2010) were analyzed retrospectively with regard to mortality and survival rates (Kaplan–Meier). Multivariate analysis was performed using a Cox proportional hazards model.

Results

Sixty cases were analyzed. The overall 1- and 3-year survival rates were 35.0% and 22.9%, respectively. Univariate analysis showed that the best prognosis was seen in patients younger than 55 years, those without distant metastases, those with white blood cell (WBC) counts < 10.0 × 109/L or blood platelet (PLT) counts < 300.0 × 109/L at presentation, those who did not receive chemotherapy, and those who received radiotherapy doses ≥ 40 Gy or underwent surgery plus postoperative radiotherapy. According to multivariate analysis, the WBC count at first presentation and the type of therapeutic regimen independently influenced survival.

Conclusions

We found that the elevated peripheral PLT count may be an adverse prognostic factor of ATC patients. The prognosis for ATC is especially poor for patients with distant metastasis, a WBC count ≥ 10.0×109/L, a PLT count ≥ 300.0 × 109/L, or age ≥ 55 years. WBC count at presentation and surgery with or without postoperative radiotherapy independently influenced the prognosis. Intensive treatment combining surgery with postoperative radiotherapy is recommended for ATC patients with stage IVA/B disease.  相似文献   
843.
Activated persulfate oxidation technologies based on sulfate radicals were first evaluated for defluorination of aqueous perfluorooctanesulfonate (PFOS). The influences of catalytic method, time, pH and K2S2O8 amounts on PFOS defluorination were investigated. The intermediate products during PFOS defluorination were detected by using LC/MS/MS. The results showed that the S2O8 2− had weak effect on the defluorination of PFOS, while the PFOS was oxidatively defluorinated by sulfate radicals in water. The defluorination efficiency of PFOS under various treatment was followed the order: HT (hydrothermal)/K2S2O8 > UV (ultraviolet)/K2S2O8 > Fe2+/K2S2O8 > US (ultrasound)/K2S2O8. Low pH was favorable for the PFOS defluorination with sulfate radicals. Increase in the amount of S2O8 2− had positive effect on PFOS defluorination. However, further increase in amounts of S2O8 2− caused insignificant improvement in PFOS defluorination due to elimination of sulfate radicals under high concentration of S2O8 2−. CF3(CF2)nCOOH (n = 0–6) were detected as intermediates during PFOS defluorination. Sulfate radicals oxidation and hydrolysis were the main mechanisms involved in defluorination process of PFOS.  相似文献   
844.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides −170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis.  相似文献   
845.
Studies of linkage and association in various ethnic populations have revealed many predisposing genes of multiple neurotransmitter systems for alcohol use disorders (AUD). However, evidence often is contradictory regarding the contribution of most candidate genes to the susceptibility of AUD. We, therefore, performed a case-control study to investigate the possible associations of genes selected from multiple neurotransmitter systems with AUD in a homogeneous Tibetan community population in China. AUD cases (N = 281) with an alcohol use disorder identification test (AUDIT) score ≥10, as well as healthy controls (N = 277) with an AUDIT score ≤5, were recruited. All participants were genotyped for 366 single nucleotide polymorphisms (SNPs) of 34 genes selected from those involved in neurotransmitter systems. Association analyses were performed using PLINK version 1.07 software. Allelic analyses before adjustment for multiple tests showed that 15 polymorphisms within seven genes were associated with AUD (p<0.05). After adjustment for the number of SNPs genotyped within each gene, only the association of a single marker (rs10044881) in HTR4 remained statistically significant. Haplotype analysis for two SNPs in HTR4 (rs17777298 and rs10044881) showed that the haplotype AG was significantly associated with the protective effect for AUD. In conclusion, the present study discovered that the HTR4 gene may play a marked role in the pathogenesis of AUD. In addition, this Tibetan population sample marginally replicated previous evidence regarding the associations of six genes in AUD.  相似文献   
846.

Background

Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The “gut-liver axis” closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT).

Methods

The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis.

Principal Findings

Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum.

Conclusion

Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the “gut-liver axis”.  相似文献   
847.
Previously, we have documented that isolated autophagosomes from tumor cells could efficiently cross-prime tumor-reactive naïve T cells and mediate tumor regression in preclinical mouse models. However, the effect of tumor-derived autophagosomes, here we refer as to DRibbles, on B cells has not been studied so far. At present study, we found that DRibbles generated from a murine hepatoma cell line Hep1-6, induced B-cell activation after intravenous injection into mice. B-cell populations were significantly expanded and the production of Hep1-6 tumor-specific antibodies was successfully induced. Moreover, in vitro studies showed that DRibbles could induce more efficient B-cell proliferation and activation, antibody production, and cytokine secretion than whole tumor cell lysates. Notably, we found that B-cell activation required proteins but not DNA in the DRibbles. We further showed that B cells could capture DRibbles and present antigens in the DRibbles to directly induce T cell activation. Furthermore, we found that B-cell activation, antibody production, cytokine secretion and antigen cross-presentation were TLR2-MyD88 pathway dependent. Taken together, the present studies demonstrated that tumor-derived autophagosomes (DRibbles) efficiently induced B cells activation, antibody production, cytokine secretion and antigen cross-presentation mainly depending on their protein component via TLR2/MyD88 dependent manner.  相似文献   
848.

Purpose

To determine the optimal standardized uptake value (SUV) of 18F-fluorodeoxyglucose (18F-FDG) for positron emission tomography (PET) imaging, at which the PET-defined gross tumor volume (GTVPET) best matches with the pathological volume (GTVPATH) in the cervical cancer.

Materials and Methods

Ten patients with the cervical cancer who underwent surgery were enrolled in this study. The excised specimens were processed for whole-mount serial sections and H-E staining. The tumor borders were outlined in sections under a microscope, histopathological images were scanned and the GTVPATH calculated. The GTVPET was delineated automatically by using various percentages relative to the maximal SUV and absolute SUV. The optimal threshold SUV was further obtained as the value at which the GTVPET best matched with the GTVPATH.

Results

An average of 85±10% shrinkage of tissue was observed after the formalin fixation. The GTVPATH was 13.38±2.80 cm3 on average. The optimal threshold on percentile SUV and absolute SUV were 40.50%±3.16% and 7.45±1.10, respectively. The correlation analysis showed that the optimal percentile SUV threshold was inversely correlated with GTVPATH (p<0.05) and tumor diameter (p<0.05). The absolute SUV was also positively correlated with SUVmax (p<0.05).

Conclusion

The pathological volume could provide the more accurate tumor volume. The optimal SUV of FDG for PET imaging by use of GTVPATH as standard for cervical cancer target volume delineation was thus determined in this study, and more cases are being evaluated to substantiate this conclusion.  相似文献   
849.
Basement membranes (BMs) evolved together with the first metazoan species approximately 500 million years ago. Main functions of BMs are stabilizing epithelial cell layers and connecting different types of tissues to functional, multicellular organisms. Mutations of BM proteins from worms to humans are either embryonic lethal or result in severe diseases, including muscular dystrophy, blindness, deafness, kidney defects, cardio-vascular abnormalities or retinal and cortical malformations. In vivo-derived BMs are difficult to come by; they are very thin and sticky and, therefore, difficult to handle and probe. In addition, BMs are difficult to solubilize complicating their biochemical analysis. For these reasons, most of our knowledge of BM biology is based on studies of the BM-like extracellular matrix (ECM) of mouse yolk sac tumors or from studies of the lens capsule, an unusually thick BM. Recently, isolation procedures for a variety of BMs have been described, and new techniques have been developed to directly analyze the protein compositions, the biomechanical properties and the biological functions of BMs. New findings show that native BMs consist of approximately 20 proteins. BMs are four times thicker than previously recorded, and proteoglycans are mainly responsible to determine the thickness of BMs by binding large quantities of water to the matrix. The mechanical stiffness of BMs is similar to that of articular cartilage. In mice with mutation of BM proteins, the stiffness of BMs is often reduced. As a consequence, these BMs rupture due to mechanical instability explaining many of the pathological phenotypes. Finally, the morphology and protein composition of human BMs changes with age, thus BMs are dynamic in their structure, composition and biomechanical properties.  相似文献   
850.

Background

Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics.

Methodology/findings

The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002–2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km2 region.

Conclusions/Significance

E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used to predict human disease risk and for controlling this zoonotic helminthic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号