首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48192篇
  免费   3665篇
  国内免费   3491篇
  55348篇
  2024年   120篇
  2023年   577篇
  2022年   1375篇
  2021年   2227篇
  2020年   1520篇
  2019年   1923篇
  2018年   2050篇
  2017年   1677篇
  2016年   2174篇
  2015年   2506篇
  2014年   3218篇
  2013年   3481篇
  2012年   3968篇
  2011年   3707篇
  2010年   2622篇
  2009年   2301篇
  2008年   2631篇
  2007年   2364篇
  2006年   2067篇
  2005年   1698篇
  2004年   1595篇
  2003年   1503篇
  2002年   1230篇
  2001年   1001篇
  2000年   839篇
  1999年   616篇
  1998年   382篇
  1997年   322篇
  1996年   307篇
  1995年   320篇
  1994年   291篇
  1993年   225篇
  1992年   290篇
  1991年   260篇
  1990年   208篇
  1989年   192篇
  1988年   129篇
  1987年   175篇
  1986年   145篇
  1985年   128篇
  1984年   101篇
  1983年   95篇
  1982年   82篇
  1981年   78篇
  1980年   52篇
  1979年   62篇
  1978年   66篇
  1976年   51篇
  1973年   63篇
  1972年   52篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Leaf mesostructure, photochemical activity, and chloroplast photophosphorylation (PP) in the fourth true leaf of 28-day-old Chinese cabbage (Brassica chinensis L.) plants were investigated. Plants were grown under a light source based on red (650 nm) and blue (470 nm) light-emitting diodes (LED) with red/blue photon flux ratio of 7: 1 and under illumination with high-pressure sodium lamp (HPSL) at photon flux densities of 391 ± 24 μmol/(m2 s) (“normal irradiance”) and 107 ± 9 μmol/(m2 s) (“low irradiance”) in photosynthetically active range. At normal irradiance, the leaf area in plants grown under HPSL was twofold higher than in LED-illuminated plants; other parameters of leaf mesostructure were little affected by spectral quality of incident light. The lowering of growth irradiance reduced the majority of leaf mesostructure parameters in plants grown under illumination with HPSL, whereas in LED-illuminated plants the lowered irradiance reduced only specific leaf weight but increased the leaf thickness and dimensions of mesophyll cells and chloroplasts. The photochemical activity of isolated chloroplasts was almost independent of growth irradiance and light spectral quality. Light quality and intensity used for plant growing had a considerable impact on PP in chloroplasts. At normal light intensity, the highest activity of noncyclic PP in chloroplasts was observed for plants grown under HPSL; at low light intensity the highest rates of PP were noted for plants grown under LED. The P/2e ratio, which characterizes the degree of PP coupling to electron transport in the chloroplast electron transport chain, showed a similar pattern. Thus, the narrow-band spectrum of the light source had little influence on leaf mesostructure and electron transport rates. However, this spectrum significantly affected the chloroplast PP activity. The PP patterns at low and normal light intensities were opposite for plants grown under LED and HPSL light sources. We suppose that growing plants under LED array at normal light intensity disturbed the chloroplast coupling system, thus preventing the effective use of light energy for ATP synthesis. At low light intensity, chloroplast PP activity was significantly higher under LED illumination, but plant growth was suppressed because of impaired adaptation to low light intensity.  相似文献   
992.
993.

Aims

This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes.

Methods

Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay.

Results

MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002.

Conclusions

These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.  相似文献   
994.
995.
Spo11 is a homolog of a subunit of archaebacterial topoisomerase, which catalyzes DNA double-strand breaks and initiates homologous chromosome recombination. In the present study, we silenced the SPO11-1 gene in rice (Oryza sativa) using RNAi. Rice plants with loss-of-function of OsSPO11-1 have no apparent growth defects during vegetative development, but homologous chromosome pairing and recombination are significantly obstructed. Telomeres can be assembled as bouquet during the zygotene stage of the OsSPO11-1-deficient plants, just as that in wild type. Although the two axial-associated proteins, REC8 and PAIR2, are loaded onto the chromosomes, the depletion of PAIR2 from the chromosomes is much later than in wild type. The central element of the synaptonemal complex (SC), ZEP1, does not load onto the chromosomes normally, implying that SC formation is disturbed severely. The crossover protein, MER3, isn't efficiently assembled onto chromosomes and the lack of bivalent suggests that crossovers are also affected in the absence of OsSPO11-1. Thus, OsSPO11-1 is essential for both homologous chromosomes pairing and crossover formation during meiosis in rice.  相似文献   
996.
We describe here a simple and efficient system of soybean (Glycine max L. Merrill) regeneration through direct somatic embryogenesis by using immature embryonic shoot tips (IEST) as explants. The cultivar Kaohsiung 10 (cv. K10) used in this study did not show embryogenic response either from mature seed-derived explants (cotyledon, embryonic tip, leaf, shoot and root) or immature cotyledons. However, it showed a high percentage (55.8%) of somatic embryo (SEm) formation from the IEST excised 2–3 wk after flowering, thus indicating the crucial roles of type and age of explants. The IEST put forth primary SEm after 2 mo of culturing on Murashige and Skoog (MS) medium supplemented with 6% sucrose, 164.8 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 5 mM asparagine and 684 μM glutamine. Subsequently, secondary SEm were developed 1 mo after culturing on MS medium containing 123.6 μM 2,4-D and 3% sucrose. Cotyledonary embryos were induced on MS medium supplemented with 0.5% activated charcoal after 1 mo. The embryos were desiccated for 72–96 h on sterile Petri dishes and regenerated on hormone-free MS medium. Plantlets with well-developed shoots and roots were obtained within 5–6 mo of culturing of IEST. The SEm-derived plants were morphologically normal and fertile. Various parameters thought to be responsible for efficient regeneration of soybean through somatic embryogenesis are discussed. To our knowledge, this is the first report to employ IEST as explants for successful direct somatic embryogenesis in soybean.  相似文献   
997.
The Aurora kinases play a critical role in mitosis and have been suggested as promising targets for cancer therapy due to their frequent overexpression in a variety of tumors. Compared with established inhibitors of cell division such as the anti-tubulins, novel agents target mitotic enzymes and show similar efficacy but with fewer side effects. Several small-molecule inhibitors of Aurora kinases have been developed as anticancer agents, some of which have progressed to early clinical evaluation. Here we identified 3-hydroxyflavone as a novel Aurora B inhibitor through high throughput screening. 3-Hydroxyflavone showed potent inhibition to Aurora B with the IC50 on a nanomolar basis in the enzyme-based kinase activity assay. In the cell-based western blotting analysis, 3-hydroxyflavone dramatically decreased the phosphorylation level of Histone H3 on the site of serine 10, demonstrating the potent endogenous Aurora B activity inhibition in cell level. The followed cell image analysis provided the consist result. To make it clear whether 3-hydroxyflavone inhibited Aurora B by direct binding or not, SPR analysis was carried out to measure the affinity of interaction between Aurora B protein and 3-hydroxyflavone and the result proved the binding with high affinity. Usually Aurora activity suppression induced cancer cell proliferation inhibition. Colony formation and cell viability with/without treatment of 3-hydroxyflavone were measured using CCK-8. The growth suppression under 3-hydroxyflavone present and the growth recovery after being released gave strong evidence that presence of 3-hydroxyflavone efficiently inhibited the fast growth of cancer cells.  相似文献   
998.
Growing interest in the beneficial effects of antioxidants has inspired the synthesis of new phenolic acid phenethyl ureas (PAPUs) with enhanced antioxidant potential. We have previously shown the capacity of one PAPU compound, (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1), to induce caspase-dependent apoptosis in melanoma cells. In the present study, we examined the anti-proliferative effects of PAPU compounds on MCF-7 human breast cancer cells and determined the molecular mechanisms involved. Treatment with PAPU compounds inhibited predominantly proliferation in these cells, where the PAPU1 was the most efficient form. Flow cytometric analysis showed that PAPU1 blocked cell cycle progression in the G0/G1 phase, and reduced the proportion of cells in G2/M phase. This was related to the inhibition of cell cycle regulatory factors, including cyclin D/E and cyclin-dependent kinase (CDK) 2/4, through induction of p21Cip1. PAPU1 also induced the mitochondrial-mediated and caspase-dependent apoptosis in MCF-7 cells. This was evidenced by cellular changes in the levels of Bcl-2 and Bax, loss of the mitochondrial membrane potential, release of cytochrome c into the cytosol, and caspase-9 activation. Collectively, our results suggest that G1 cell cycle regulatory proteins and mitochondrial pathways are the crucial targets of PAPU1 in the chemoprevention of breast cancer cells.  相似文献   
999.
Small mammals were studied in the Kazakh Uplands in the spring and fall of 2008. The trapping studies revealed 10 species. Abundances of the animals were low in the four main distinct characteristic biotopes of Bayanaul National Park, but those of biotope dominants were high. In the Kazakh Uplands, rodents and insectivores are clearly restricted to certain biotopes. Biodiversity indices for small mammal communities are low, indicating that the community structure is disturbed.  相似文献   
1000.
Pirutin  S. K.  Turovetskii  V. B.  Kudryashov  Yu. B. 《Biophysics》2010,55(1):148-150
Lowering the extracellular pH (from 7.2 to 6.3) or intracellular acidification in isolated murine peritoneal macrophages before UV-irradiating them to 9 J/cm2max = 306 nm) diminish the percentage of cells with damaged membranes. Extracellular pH 8.4 or intracellular alkalization have an opposite effect. After transient hypoosmotic swelling, the UV-induced membrane damage is fully pronounced regardless of external pH. In cells that survive UV-irradiation to 8 and 10 J/cm2max = 297 nm), the intracellular pH is 0.2 and 0.25 unit lower than in nonirradiated cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号