首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51494篇
  免费   3898篇
  国内免费   3446篇
  2024年   87篇
  2023年   513篇
  2022年   1260篇
  2021年   2253篇
  2020年   1527篇
  2019年   1940篇
  2018年   2086篇
  2017年   1710篇
  2016年   2222篇
  2015年   2590篇
  2014年   3312篇
  2013年   3681篇
  2012年   4107篇
  2011年   3864篇
  2010年   2715篇
  2009年   2379篇
  2008年   2787篇
  2007年   2510篇
  2006年   2200篇
  2005年   1856篇
  2004年   1747篇
  2003年   1662篇
  2002年   1381篇
  2001年   1141篇
  2000年   967篇
  1999年   738篇
  1998年   437篇
  1997年   363篇
  1996年   352篇
  1995年   373篇
  1994年   327篇
  1993年   262篇
  1992年   388篇
  1991年   331篇
  1990年   283篇
  1989年   258篇
  1988年   196篇
  1987年   244篇
  1986年   197篇
  1985年   176篇
  1984年   139篇
  1983年   134篇
  1982年   117篇
  1981年   106篇
  1979年   89篇
  1978年   98篇
  1977年   72篇
  1976年   74篇
  1975年   76篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
941.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   
942.
943.
944.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   
945.
946.
947.
Extracellular vesicles (EVs) are abundant, lipid‐enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type‐specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR‐Cas9‐mediated genome editing to generate mice bearing a CD63‐emGFPloxP/stop/loxP knock‐in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage‐specific Cre recombinase driver mice. As proof‐of‐principle, we have crossed these mice with Cdh5‐CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma‐purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co‐express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR‐126, miR‐30c, and miR‐125b). This new mouse strain should be a useful genetic tool for generating cell type‐specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.  相似文献   
948.
949.
Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age‐related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24–30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age‐related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.  相似文献   
950.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号