首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207694篇
  免费   27565篇
  国内免费   12933篇
  2024年   265篇
  2023年   1959篇
  2022年   4641篇
  2021年   8765篇
  2020年   7365篇
  2019年   10137篇
  2018年   10210篇
  2017年   9034篇
  2016年   11226篇
  2015年   13907篇
  2014年   15975篇
  2013年   17179篇
  2012年   17821篇
  2011年   16164篇
  2010年   12193篇
  2009年   9942篇
  2008年   10484篇
  2007年   9083篇
  2006年   8038篇
  2005年   6600篇
  2004年   5792篇
  2003年   5283篇
  2002年   4481篇
  2001年   3961篇
  2000年   3607篇
  1999年   3222篇
  1998年   1778篇
  1997年   1807篇
  1996年   1699篇
  1995年   1570篇
  1994年   1547篇
  1993年   1156篇
  1992年   1636篇
  1991年   1364篇
  1990年   1056篇
  1989年   973篇
  1988年   791篇
  1987年   727篇
  1986年   685篇
  1985年   640篇
  1984年   417篇
  1983年   388篇
  1982年   297篇
  1981年   231篇
  1980年   205篇
  1979年   232篇
  1978年   177篇
  1974年   169篇
  1973年   161篇
  1972年   164篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
81.
82.
New olean-18(19)-ene triterpenoids were effectively synthesized by the interaction of allobetulin or its acetate with phosphorous oxychloride in refluxing pyridine. The structures of the synthesized 17-chloromethyloleane-18(19)-enes were confirmed by NMR spectroscopy and X-ray analysis.  相似文献   
83.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
84.
85.
86.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
87.
Following arteriolar occlusion, tissue oxygen concentration decreases and anoxic tissue eventually develops. Although anoxia first appears in the region most distal to the capillary at the venous end, it eventually spreads throughout the entire region of supply. In this paper the changing oxygen concentration, from the time of occlusion until the tissue is entirely anoxic, is examined mathematically. The equations governing oxygen transport to tissue are solved by iterating a nonlinear integral equation. This solution is valid until anoxia first appears. After anoxia develops it is necessary to solve a moving boundary problem. This is done using the method of matched asymptotic expansions, and accurate solutions are obtained for a wide range of physiological conditions.  相似文献   
88.
We studied intraspecific features of the main enzymes of metabolism and detoxication of xenobiotics on mice (eight inbred lines) and rats (five lines) for estimation of possible variants of complete or incomplete metabolic equality. Significant genetically determined intraspecific differences for activities of the enzymes of metabolism and detoxication of xenobiotics were described. Generalized criteria for comparison of the metabolic status were proposed on the basis of activities of the main enzymes: cytochrome P-450 (hydroxylation and epoxidation), epoxyhydrolase, glutathione-S-transferase, UDP-glucuronosyl transferase, and sulfotransferase. The proposed criteria for estimation of the metabolic parameters of an individual can serve as a basis of metabolic portraiting.  相似文献   
89.
Insulin receptors of rat skeletal muscle were purified by first extracting a plasma membrane-enriched pellet obtained from a muscle homogenate with Triton X-100, followed by WGA-Sepharose and insulin-Sepharose affinity chromatography. Routinely, 4-5 micrograms of purified receptor were obtained from 15 g of tissue. The purified receptors are composed of two major polypeptides with molecular weights of 130,000 and 95,000, respectively. The binding of [125I]insulin by the purified receptors was analyzed by a Scatchard plot. There are at least two binding components. The high-affinity component, with an apparent association constant (Ka) of 2.0 X 10(9) M-1, comprises 10% of the total insulin binding sites; while the low-affinity component, with a Ka value of 1.4 X 10(8) M-1, represents 90% of the binding sites. Assuming the insulin receptor to have a molecular weight of 300,000, the receptor binds 1.7 mol of insulin per mol at saturation. Insulin is capable of stimulating the autophosphorylation of the beta-subunit of the muscle insulin receptor (Mr 95,000) by 5-10-fold. The stoichiometry of this phosphorylation reaction was determined as 0.8 phosphate per insulin binding site after a 10 min incubation with 100 nM insulin. In a previous report, I showed that the insulin stimulation of glucose transport in diaphragms from neonatal rats was small, even although the diaphragms had normal levels of insulin receptors and glucose transporters (Wang, C. (1985). Proc. Natl. Acad. Sci. USA 82, 3621-3625). To determine whether or not receptor autophosphorylation might be related to this insensitivity to insulin, the level of receptor phosphorylation was quantitated in diaphragms from rats at different stages of development. Autophosphorylation remains unchanged from birth to 21 days of age, suggesting that the lower insulin-stimulated glucose uptake by diaphragms at early stages of postnatal development as compared to that by diaphragms of older rats, is not due to a difference in receptor kinase.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号