首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   17篇
  2022年   2篇
  2021年   4篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   4篇
  2013年   15篇
  2012年   21篇
  2011年   15篇
  2010年   10篇
  2009年   12篇
  2008年   21篇
  2007年   19篇
  2006年   24篇
  2005年   20篇
  2004年   20篇
  2003年   14篇
  2002年   16篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   9篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1977年   4篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
11.
We have isolated a novel serine/threonine kinase gene designated Gek1 from mouse primordial germ cell-derived embryonic germ cell. Gek1 is preferentially expressed in meiotic testicular germ cells and primordial germ cells. Gek1 mRNA is also detected in several other tissues, including hematopoietic organs in adult mice and central nervous system in embryos. The Gek1 cDNA encodes a protein with the consensus sequence of the catalytic domain of protein kinases in its N-terminal region. The deduced amino acid sequence of Gek1 in the kinase domain is related to those encoded by the Saccharomyces cerevisiae STE20, CDC15, and Drosophila melanogaster ninaC. The patterns of expression and the structural features of Gek1 suggest that the gene product is involved in signal transduction or nuclear division of germ cells and other proliferating cells. We also show that Gek1 locates on chromosome 11, near the wr locus, showing neuronal and reproductive defects. © 1996 Wiley-Liss, Inc.  相似文献   
12.
Matrix metallproteinases (MMP)-2 and -9 are associated with cancer invasion and metastasis. MMP-2 and MMP-9 activities have never been assayed in bile. In the present study we investigated whether MMP-2 and -9 activities in the bile could be a marker for evaluation of liver metastasis in colorectal cancer. Fifty-three patients underwent colorectal resection for histologically verified adenocarcinoma. Twenty-six patients had colorectal cancer without liver metastasis and 27 patients had metastatic liver tumor. Six patients were studied as carcinoma-free control. MMP-2 and MMP-9 activities were assayed in bile using gelatin zymography and quantitated. Active MMP-2 activity of colorectal cancer with liver metastasis group (24.1 +/- 2.5 pixel count) was significantly higher than that of colorectal cancer without liver metastasis group (11.4 +/- 1.3 pixel count) (P < 0.001) or of control group (6.4 +/- 1.0 pixel count) (P < 0.001). Active MMP-9 was not detected in bile. ProMMP-9 activity of colorectal cancer with liver metastasis group (530.3 +/- 127.5 pixel count) was significantly higher than that of colorectal cancer without liver metastasis group (213.9 +/- 33.2 pixel count) (P = 0.008). This is the first report showing that the levels of active MMP-2 and proMMP-9 in bile were significantly higher in liver metastasis of colorectal cancer than in metastasis-free colorectal cancer. The results suggest that activities of active MMP-2 and proMMP-9 in the bile may be useful markers for predicting liver metastasis in colorectal cancer.  相似文献   
13.
1,3-beta-D-Glucan, a major filamentous component of the cell wall in the budding yeast Saccharomyces cerevisiae, is synthesized by 1,3-beta-glucan synthase (GS). Although a yeast gene whose product is required for GS activity in vitro, GNS1, was isolated and characterized, its role in GS function has remained unknown. In the current study we show that Deltagns1 cells accumulate a non-competitive and non-proteinous inhibitor(s) in the membrane fraction. Investigations of inhibitory activity on GS revealed that the inhibitor(s) is mainly present in the sphingolipid fraction. It is shown that Deltagns1 cells contain phytosphingosine (PHS), an intermediate in the sphingolipid biosynthesis, 30-fold more than wild-type cells do. The membrane fraction isolated from Deltasur2 cells contains an increased amount of dihydrosphingosine (DHS) and also exhibits reduced GS activity. Among constituents of the sphingolipid fraction, PHS and DHS show striking inhibition in a non-competitive manner. The intracellular level of DHS is much lower than that of PHS in wild-type cells, suggesting that PHS is the primary inhibitor of GS in vivo. The localization of PHS to the endoplasmic reticulum in wild-type cells coincides with that of the inhibitor(s) in Deltagns1 cells. Taken together, our results indicate that PHS is a potent inhibitor of yeast GS in vivo.  相似文献   
14.
CD40 ligand (CD40L) is a 33-kDa type II membrane glycoprotein mainly expressed on activated CD4(+) T cells in trimeric form. When it is mutated, the clinical consequences are X-linked hyper-IgM syndrome (XHIM), a primary immunodeficiency disorder characterized by low levels of IgG, IgA, and elevated or normal levels of IgM. Mutated CD40L can no longer bind CD40 nor provide signals for B cells to proliferate and to switch from IgM to other immunoglobulin isotypes. When considering gene therapy for XHIM, it is important to address the possibility that the mutated CD40L associates with transduced wild type CD40L, and as a consequence, immune reconstitution is not attained. In this study, we demonstrate that the various mutated CD40L species we have identified in patients with XHIM, including both full-length and truncated mutants, associate with wild type CD40L on the cell surface of co-transfected COS cells. The association between wild type and mutated CD40L was also observed in CD4(+) T cell lines established from XHIM patients with leaky splice site mutations. The clinical phenotype of these patients suggests that this association between wild type and mutated CD40L species may result in less efficient cross-linking of CD40.  相似文献   
15.
Cholestanol induces apoptosis of cerebellar neuronal cells   总被引:1,自引:0,他引:1  
Cerebrotendinous xanthomatosis (CTX) is a hereditary lipid storage disease characterized by hyper-cholestanolemia, cerebellar ataxia, xanthoma, and cataract. We hypothesized that cholestanol in serum of CTX patients might induce neuronal cell death in the cerebellum and eventually lead to cerebellar ataxia. To gain support for this hypothesis we developed hyper-cholestanolemia rats by feeding cholestanol. Neuronal cells, especially Purkinje cells in the cerebellum were stained by Sudan black B only in the cholestanol-fed rats, indicating the deposit of cholestanol in cerebellum. To examine effects of cholestanol in vitro, cerebellar neuronal cells were cultured with cholestanol. The cholestanol concentration increased and the viability decreased in cells cultured with cholestanol. Apoptosis was evident in cells cultured with cholestanol more frequently than in control cells, determined using the terminal deoxynucleotidyl transferase (TdT) dUTP nick end-labeling (TUNEL) method. As activities of interleukin-1beta-converting enzyme (ICE) and CPP32 protease were increased in cells cultured with cholestanol, all these data taken together suggest that cholestanol induced apoptosis of cerebellar neuronal cells. Our observations may explain the mechanism of cerebellar ataxia of CTX patients.  相似文献   
16.
The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.  相似文献   
17.
Thickness shear mode quartz-crystal resonator coated with plasma polymer films (PPFs) produced by radio-frequency sputtering of biomaterials and synthetic polymers were examined with respect to their abilities to continuously monitor indoor air. We confirmed the sensory capabilities of an array of PPF sensors to aromas emitted from essential oils at concentrations as low as the detection threshold of human olfaction. Changes in humidity induced a drift in the response curves of PPF sensors. On the contrary, volatile compounds exhibited pulse signals. The pulse signals of a D-phenylalanine sensor and a polyethylene sensor were synchronous, but the direction of the peaks was inverted in most cases. Compared with a photo-ionization detector sensor, the PPF sensors were able to detect subtle changes in the concentrations of volatile compounds in indoor air.  相似文献   
18.
The development of engineered constructs to bridge nerve gaps may hold the key to improved functional outcomes in the repair of injured peripheral nerves. These constructs must be rendered bioactive by providing the growth factors required for successful peripheral nerve regeneration. Previous studies demonstrated that harvested human and rat dermal fibroblasts could be genetically engineered to release nerve growth factor (NGF) both in vitro and in vivo. The use of fibroblasts, however, has the potential to cause scarring, and the expression of NGF from those cells was transient. To overcome these potential difficulties, human embryonic kidney cells were modified for use with the ecdysone-inducible mammalian expression system. These cells (hNGF-EcR-293) have been engineered and regulated to secrete human NGF in response to the ecdysone analogue ponasterone A. HEK-293 cells were transfected with human NGF cDNA with the ecdysone-inducible mammalian expression system (Invitrogen, Carlsbad, Calif.). Stable clones were then selected. Ponasterone A, an analogue of ecdysone, was used as the inducing agent. The secretion of NGF into the medium was analyzed with two different methods. After 24 hours of exposure to the inducing agent, cell medium was transferred to PC-12 cells seeded in 12-well plates, for determination of whether the secreted NGF was bioactive. Medium from untreated or ponasterone A-treated hNGF-EcR-293 cells was deemed bioactive on the basis of its ability to induce PC-12 cell differentiation. The concentrations of secreted NGF were also quantified with an enzyme-linked immunosorbent assay, in triplicate. NGF production was measured in successive samples of the same medium during a 9-day period, with maximal release of 9.05 +/- 2.6 ng/ml at day 9. Maximal NGF production was 8.46 +/- 2.1 pg/10(3) cells at day 9. These levels were statistically significantly different from levels in noninduced samples (p 相似文献   
19.
Using the expression vector of the truncated human insulin receptor (hIR), we have constructed a stable Chinese hamster ovary (CHO) cell line which secretes the His-tagged alpha subunit (insulin-binding domain) of hIR into medium. To examine characteristics of the His-tagged hIRalpha, we purified the protein secreted from the CHO cells. The His-tagged hIRalpha was glycosylated and processed a dimer. The molecule bound insulin with an affinity similar to that of the intact hIR. The His-tagged full length of hIR was autophosphorylated by insulin stimulation in CHO cells. Injection of the purified His-tagged hIRalpha into veins of mice increased in the concentration of blood glucose within 30 min. The intraperitoneal glucose tolerance test (ipGTT) done after injection of the purified His-tagged hIRalpha showed evidence of a marked hyperglycemia. These findings provide direct evidence that the presence of hIRalpha in the blood stream inhibits insulin actions by binding with plasma insulin.  相似文献   
20.
Grayanotoxin (GTX) exerts selective effects on voltage-dependent sodium channels by eliminating fast sodium inactivation and causing a hyperpolarizing shift in voltage dependence of channel activation. In this study, we adopted a newly developed protocol that provides independent estimates of the binding and unbinding rate constants of GTX (k(on) and k(off)) to GTX sites on the sodium channel protein, important in the molecular analysis of channel modification. Novel GTX sites were determined in D2S6 (Asn-784) and D3S6 (Ser-1276) by means of site-directed mutagenesis; the results suggested that the GTX receptor consists of the S6 transmembrane segments of four homologous domains facing the ion-conducting pore. We systematically introduced at two sites in D4S6 (Na(v)1.4-Phe-1579 and Na(v)1.4-Tyr-1586) amino acid substituents with residues containing hydrophobic, aromatic, charged, or polar groups. Generally, substitutions at Phe-1579 increased both k(on) and k(off), resulting in no prominent change in dissociation constant (K(d)). It seems that the smaller the molecular size of the residue at Na(v)1.4-Phe-1579, the larger the rates of k(on) and k(off), indicating that this site acts as a gate regulating access of toxin molecules to a receptor site. Substitutions at Tyr-1586 selectively increased k(off) but had virtually no effect on k(on), thus causing a drastic increase in K(d). At position Tyr-1586, a hydrophobic or aromatic amino acid side chain was required to maintain normal sensitivity to GTX. These results suggest that the residue at position Tyr-1586 has a more critical role in mediating GTX binding than the one at position Phe-1579. Here, we propose that the affinity of GTX to Na(v)1.4 sodium channels might be regulated by two residues (Phe and Tyr) at positions Phe-1579 and Tyr-1586, which, respectively, control access and binding of GTX to its receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号