首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   28篇
  662篇
  2023年   8篇
  2022年   22篇
  2021年   20篇
  2020年   7篇
  2019年   17篇
  2018年   13篇
  2017年   9篇
  2016年   14篇
  2015年   29篇
  2014年   20篇
  2013年   65篇
  2012年   40篇
  2011年   46篇
  2010年   31篇
  2009年   23篇
  2008年   31篇
  2007年   36篇
  2006年   39篇
  2005年   32篇
  2004年   21篇
  2003年   23篇
  2002年   28篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1982年   2篇
  1978年   3篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1969年   5篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有662条查询结果,搜索用时 117 毫秒
81.
82.
Ostrich pancreatic phospholipase A(2) (OPLA(2)) was purified from delipidated pancreases. Pure protein was obtained after heat treatment (70 degrees C), precipitation by ammonium sulphate and ethanol, respectively followed by sequential column chromatography on MonoQ Sepharose and size exclusion HPLC column. Purified OPLA(2), which is not a glycosylated protein, was found to be monomeric protein with a molecular mass of 13773.93 Da. A specific activity of 840U/mg for purified OPLA(2) was measured at optimal conditions (pH 8.2 and 37 degrees C) in the presence of 4 mM NaTDC and 10 mM CaCl(2) using PC as substrate. This enzyme was also found to be able to hydrolyze, at low surface pressure, 1,2-dilauroyl-sn-glycero-3 phosphocholine (di C(12)-PC) monolayers. Maximal activity was measured at 5-8 mNm(-1). The sequence of the first 22 amino-acid residues at the N-terminal extremity of purified bird PLA(2) was determined by automatic Edman degradation and showed a high sequence homology with known mammal pancreatic secreted phospholipases A(2).  相似文献   
83.
84.
85.
86.
87.
We have previously demonstrated that treatment of pregnant C57BL mice from gestation days 8 to 14 with alcohol with 20% ethanol-derived calories (EDC) reduced the number of serotonin (5-HT) neurons and retarded their migration in the fetal brains. In the present study, we obtained similar results with the use of 25% EDC and extended our previous findings by demonstrating that besides the alteration of the number of 5-HT neurons, prenatal alcohol exposure also affects their projecting fibers in their early development. Pregnant C57BL mice were divided into an alcohol-exposed (ALC) group given 25% EDC (4.49%, v/v), a pair-fed group to the ethanol-fed group (PF) and a chow-fed group (Chow). The PF and Chow groups served as controls. Our results showed that in the ALC group, when compared with the control groups, prenatal alcohol exposure with 25% EDC reduced the number of 5-HT-immunoreactive neurons in both the median and dorsal raphe, and the amount of 5-HT-immunoreactive fibers in the medial forebrain bundle (MFB). The diameter of the 5-HT-immunoreactive MFB was also reduced as a result of treatment. No significant differences of the above parameters were found between the PF and Chow groups. The previous and present work confirmed that alcohol reduces the normal formation and growth of 5-HT neurons in the midbrain. Furthermore, the projection of 5-HT fibers, in density as well as in distribution, is reduced in the major trajectory bundle. This may affect the amount of 5-HT fibers available to the forebrain. In light of the importance of the 5-HT system in brain development, alcohol may affect the growth of the forebrain through its effect on 5-HT signaling.  相似文献   
88.
A thermoactive and thermostable levansucrase was purified from a newly isolated thermophilic Bacillus sp. from Thailand soil. The purification was achieved by alcohol precipitation, DEAE-Cellulose and gel filtration chromatographies. The enzyme was purified to homogeneity as determined by SDS-PAGE, and had a molecular mass of 56 kDa. This levansucrase has some interesting characteristics regarding its optimum temperature and heat stability. The optimum temperature and pH were 60 degrees C and 6.0, respectively. The enzyme was completely stable after treatment at 50 degrees C for more than 1 h, and its activity increased four folds in the presence of 5 mM Fe(2+). The optimum temperature for levan production was 50 degrees C. Contrary to other levansucrases, the one presented in this study is able to produce high molecular weight levan at 50 degrees C.  相似文献   
89.
Biodegradation of phenol has been investigated using a bacterial consortium consisting of two bacterial isolates; one of them used for the first time in phenol biodegradation. This consortium was isolated from activated sludge and identified as Providencia stuartii PL4 and Pseudomonas aeruginosa PDM (accession numbers KY848366 and MF445102, respectively). The degradation of phenol by this consortium was optimal at pH 7 with using 1500?mg?l?1 ammonium chloride as a nitrogen source. Interestingly, after optimizing the biodegradation conditions, this consortium was able to degrade phenol completely up to 1500?mg?l?1 within 58?h. The immobilization of this consortium on various supporting materials indicated that polyvinyl alcohol (PVA)-alginate beads and polyurethane foam (PUF) were more suitable for biodegradation process. The freely suspended cells could degrade only 6% (150?mg?l?1) of 2500?mg?l?1 phenol, whereas, the immobilized PVA-alginate beads and the immobilized PUF degraded this concentration completely within 120?h of incubation with degradation rates (q) 0.4839 and 0.5368 (1/h) respectively. Thus, the immobilized consortium of P. stuartii PL4 and P. aeruginosa PDM can be considered very promising in the treatment of effluents containing phenol.  相似文献   
90.
Production of peaches (Prunus persica (L.) Batsch) for both local market and export is increasing each year in Egypt. Brown rot disease, caused by Monilinia laxa and Monilinia fructigena, is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing. Antifungal activity of glycyrrhizic acid nanoparticles (GA-NPs) and glycyrrhizic acid (GA) at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies. In the in vitro studies, GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar (PDA) amended with 0.4 mmol/L GA-NPs. Micrographs of M. fructigena exposed to 0.4 mmol/LGA showed mycelial deformations, nodule formation, detachment of the cell wall, shrinkage and inhomogeneous cytoplasmic materials with large vacuoles. Mycelium of M. laxa exposed to 0.4 mmol/ LGA-NPs resulted in thinner and distorted hyphae, nodule formation, cell wall thinning, and swellings. The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids (TSS). GA-NPs were more effective in decreasing decay incidence than their bulk material. The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019. Furthermore, 0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95 (M. laxa) and 88% (M. fructigena) in 2018 season and 96 (M. laxa) and 85% (M. fructigena) in 2019 season. In conclusion, GA-NPs could enhance the resistance of peaches against brown rot caused by M. laxa and M. fructigena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号