首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   38篇
  680篇
  2023年   8篇
  2022年   23篇
  2021年   20篇
  2020年   7篇
  2019年   17篇
  2018年   14篇
  2017年   9篇
  2016年   17篇
  2015年   30篇
  2014年   21篇
  2013年   65篇
  2012年   41篇
  2011年   46篇
  2010年   32篇
  2009年   23篇
  2008年   34篇
  2007年   36篇
  2006年   40篇
  2005年   33篇
  2004年   21篇
  2003年   24篇
  2002年   28篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1982年   2篇
  1978年   3篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1969年   5篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1962年   1篇
  1961年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有680条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
Intrauterine growth restriction (IUGR) is an obstetric complication characterised by placental insufficiency and secondary cardiovascular remodelling that can lead to cardiomyopathy in adulthood. Despite its aetiology and potential therapeutics are poorly understood, bioenergetic deficits have been demonstrated in adverse foetal and cardiac development. We aimed to evaluate the role of mitochondria in human pregnancies with IUGR. In a single‐site, cross‐sectional and observational study, we included placenta and maternal peripheral and neonatal cord blood mononuclear cells (PBMC and CBMC) from 14 IUGR and 22 control pregnancies. The following mitochondrial measurements were assessed: enzymatic activities of mitochondrial respiratory chain (MRC) complexes I, II, IV, I + III and II + III, oxygen consumption (cell and complex I‐stimulated respiration), mitochondrial content (citrate synthase [CS] activity and mitochondrial DNA copy number), total ATP levels and lipid peroxidation. Sirtuin3 expression was evaluated as a potential regulator of bioenergetic imbalance. Intrauterine growth restriction placental tissue showed a significant decrease of MRC CI enzymatic activity (P < 0.05) and CI‐stimulated oxygen consumption (P < 0.05) accompanied by a significant increase of Sirtuin3/β‐actin protein levels (P < 0.05). Maternal PBMC and neonatal CBMC from IUGR patients presented a not significant decrease in oxygen consumption (cell and CI‐stimulated respiration) and MRC enzymatic activities (CII and CIV). Moreover, CS activity was significantly reduced in IUGR new‐borns (P < 0.05). Total ATP levels and lipid peroxidation were preserved in all the studied tissues. Altered mitochondrial function of IUGR is especially present at placental and neonatal level, conveying potential targets to modulate obstetric outcome through dietary interventions aimed to regulate Sirtuin3 function.  相似文献   
25.
International Journal of Peptide Research and Therapeutics - The success of endodontic treatments depends on the elimination of intracanal pathogens. Since irrigation and instrumentation can only...  相似文献   
26.
27.
Extremophiles - The prokaryotic communities of water bodies contaminated by acid mine drainage from the São Domingos mining area in southern Portugal were analyzed using a meta-taxonomics...  相似文献   
28.
Although important for cellular stress signaling pathways, the molecular mechanisms of acid sphingomyelinase (ASMase) activation remain poorly understood. Previous studies showed that treatment of MCF-7 mammary carcinoma cells with the potent protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate (PMA), induces a transient drop in sphingomyelin concomitant with an increase in cellular ceramide levels (Becker, K. P., Kitatani, K., Idkowiak-Baldys, J., Bielawski, J., and Hannun, Y. A. (2005) J. Biol. Chem. 280, 2606-2612). Here we show that PMA selectively activates ASMase and that ASMase accounts for the majority of PMA-induced ceramide. Pharmacologic inhibition and RNA interference experiments indicated that the novel PKC, PKCdelta, is required for ASMase activation. Immunoprecipitation experiments revealed the formation of a novel PKCdelta-ASMase complex after PMA stimulation, and PKCdelta was able to phosphorylate ASMase in vitro and in cells. Using site-directed mutagenesis, we identify serine 508 as the key residue phosphorylated in response to PMA. Phosphorylation of Ser(508) proved to be an indispensable step for ASMase activation and membrane translocation in response to PMA. The relevance of the proposed mechanism of ASMase regulation is further validated in a model of UV radiation. UV radiation also induced phosphorylation of ASMase at serine 508. Moreover, when transiently overexpressed, ASMase(S508A) blocked the ceramide formation after PMA treatment, suggesting a dominant negative function for this mutant. Taken together, these results establish a novel direct biochemical mechanism for ASMase activation in which PKCdelta serves as a key upstream kinase.  相似文献   
29.
Ostrich pancreatic phospholipase A(2) (OPLA(2)) was purified from delipidated pancreases. Pure protein was obtained after heat treatment (70 degrees C), precipitation by ammonium sulphate and ethanol, respectively followed by sequential column chromatography on MonoQ Sepharose and size exclusion HPLC column. Purified OPLA(2), which is not a glycosylated protein, was found to be monomeric protein with a molecular mass of 13773.93 Da. A specific activity of 840U/mg for purified OPLA(2) was measured at optimal conditions (pH 8.2 and 37 degrees C) in the presence of 4 mM NaTDC and 10 mM CaCl(2) using PC as substrate. This enzyme was also found to be able to hydrolyze, at low surface pressure, 1,2-dilauroyl-sn-glycero-3 phosphocholine (di C(12)-PC) monolayers. Maximal activity was measured at 5-8 mNm(-1). The sequence of the first 22 amino-acid residues at the N-terminal extremity of purified bird PLA(2) was determined by automatic Edman degradation and showed a high sequence homology with known mammal pancreatic secreted phospholipases A(2).  相似文献   
30.
Psychological trauma is unique in that it is an environmental event that could induce biological changes and post-traumatic stress disorder (PTSD), depression, or other mood disorders in some patients. On the other hand, there may be no psychopathology (in most cases), or even sometimes post-traumatic growth and resilience. According to the DSM-5, trauma is a prerequisite for PTSD and traumatic stress disorder, but not for depressive episodes or mood disorders, or other psychiatric conditions. This paper brings attention to the preliminary literature on transgenerational inheritance due to trauma exposure and its societal and cultural implications. There is accumulating evidence that exposure to trauma can be passed transgenerationally through epigenetic inheritance leading to changes in gene expression and possible disorders or resilience. The effects of resilience from transgenerational inheritance have not been studied, but should be, for a full understanding not only of the disease risk across generations, but also of its social and cultural implications. The epigenetic pathologic effects across generations also need further studies, as the current research is preliminary; larger replications are needed for definitive and more complete understanding. I present here a glimpse of where we are, a vision of where we should go in terms of future research direction for disease risk transmission, and recommend studies of resilience and post-traumatic growth across generations, as well as other studies related to the societal implications at the population level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号