首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   32篇
  国内免费   1篇
  596篇
  2024年   3篇
  2023年   6篇
  2022年   8篇
  2021年   17篇
  2020年   11篇
  2019年   22篇
  2018年   19篇
  2017年   13篇
  2016年   13篇
  2015年   24篇
  2014年   26篇
  2013年   38篇
  2012年   42篇
  2011年   24篇
  2010年   21篇
  2009年   19篇
  2008年   22篇
  2007年   22篇
  2006年   21篇
  2005年   19篇
  2004年   20篇
  2003年   25篇
  2002年   13篇
  2001年   12篇
  2000年   10篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1978年   4篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
  1971年   10篇
  1970年   5篇
  1969年   5篇
  1968年   4篇
  1967年   6篇
  1966年   3篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
11.
1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a potent inhibitor of NF-kappaB expression, can prevent the maturation of dendritic cells in vitro leading to tolerogenic dendritic cells with increased potential to induce regulatory T cells. Herein, we investigated whether the combination of allergen immunotherapy with 1,25(OH)(2)D(3) potentiates the suppressive effects of immunotherapy and whether the immunoregulatory cytokines IL-10 and TGF-beta are involved in the effector phase. OVA-sensitized and challenged BALB/c mice displayed airway hyperresponsiveness (AHR) and increased serum OVA-specific IgE levels, bronchoalveolar lavage eosinophilia, and Th2 cytokine levels. In this model, the dose response of allergen immunotherapy 10 days before OVA inhalation challenge shows strong suppression of asthma manifestations at 1 mg of OVA, but partial suppression of bronchoalveolar lavage eosinophilia, IgE up-regulation, and no reduction of AHR at 100 microg. Interestingly, coadministration of 10 ng of 1,25(OH)(2)D(3) with 100 microg of OVA immunotherapy significantly inhibited AHR and potentiated the reduction of serum OVA-specific IgE levels, airway eosinophilia, and Th2-related cytokines concomitant with increased IL-10 levels in lung tissues and TGF-beta and OVA-specific IgA levels in serum. Similar effects on suboptimal immunotherapy were observed by inhibition of the NF-kappaB pathway using the selective IkappaB kinase 2 inhibitor PS-1145. The suppressive effects of this combined immunotherapy were partially reversed by treatment with mAb to either IL-10R or TGF-beta before OVA inhalation challenge but completely abrogated when both Abs were given. These data demonstrate that 1,25(OH)(2)D(3) potentiates the efficacy of immunotherapy and that the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model.  相似文献   
12.
We present a pregnant woman with mental retardation and mosaic for ring 18 referred for prenatal diagnosis. Major clinical features included short stature with clinodactyly in feet, foot deformity and club feet, hypotonia, kyphosis, and absence of breast development, low set ears, high arched palate, dental decay and speech disorder. Prenatal diagnosis was carried. Using amniocentesis. The fetus had a normal karyotype described as 46,XX. The fetus was evaluated for clinical features after delivery; she was healthy with no abnormal clinical characterizations.  相似文献   
13.
Metastatic renal cell carcinoma (RCC) is one of the most treatment-resistant malignancies, and patients have a dismal prognosis, with a <10% five-year survival rate. The identification of markers that can predict the potential for metastases will have a great effect in improving patient outcomes. In this study, we used differential proteomics with isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to identify proteins that are differentially expressed in metastatic and primary RCC. We identified 1256 non-redundant proteins, and 456 of these were quantified. Further analysis identified 29 proteins that were differentially expressed (12 overexpressed and 17 underexpressed) in metastatic and primary RCC. Dysregulated protein expressions of profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1) were verified on two independent sets of tissues by means of Western blot and immunohistochemical analysis. Hierarchical clustering analysis showed that the protein expression profile specific for metastatic RCC can distinguish between aggressive and non-aggressive RCC. Pathway analysis showed that dysregulated proteins are involved in cellular processes related to tumor progression and metastasis. Furthermore, preliminary analysis using a small set of tumors showed that increased expression of Pfn1 is associated with poor outcome and is a potential prognostic marker in RCC. In addition, 14–3-3ζ and Gal-1 also showed higher expression in tumors with poor prognosis than in those with good prognosis. Dysregulated proteins in metastatic RCC represent potential prognostic markers for kidney cancer patients, and a greater understanding of their involved biological pathways can serve as the foundation of the development of novel targeted therapies for metastatic RCC.Renal cell carcinoma (RCC)1 is the most common neoplasm of the adult kidney. Worldwide incidence and mortality rates of RCC are rising each decade (1). Seventy-five percent of kidney tumors are of the clear cell (ccRCC) subtype (2). Although modern imaging techniques for abdominal screening have led to increased incidental detection of renal tumors (3), unfortunately ∼25% to 30% of patients still have metastases at presentation.The prognosis with RCC is quite variable. The greatest risk of recurrence following nephrectomy is within the first 3 to 5 years (4). The ability to predict which tumors will metastasize would have a significant effect on patient outcomes, because the likelihood of a favorable response to treatment is greater when the metastatic burden is limited, and surgical resection of a single or limited number of metastases can result in longer survival (5). Furthermore, ∼3% of patients will develop a second primary renal tumor, either synchronous or metachronous. Currently, patient prognosis is assessed based on histological parameters and a multivariate analysis developed at Memorial Sloan Kettering (6), but neither is sufficiently accurate. A more accurate assessment of prognosis is urgently needed to better guide patient management.Although surgery can be curative for localized disease, many patients eventually relapse. Metastatic RCC is one of the most treatment-resistant malignancies, with chemotherapy and radiotherapy having limited effect. The five-year survival rate for metastatic RCC is ≤10% (7). Although there has been much progress in RCC treatment with the new era of antiangiogenic therapy, the majority of patients ultimately suffer a relapse and die from progression of the cancer. A more in-depth understanding of the pathogenesis of metastasis will be a cornerstone in the development of new targeted therapies. A number of prognostic markers have previously been identified based on comparative analysis of primary and metastatic tumors, including C-reactive protein, tetraspanin 7, hypoxia-inducible factor 1 α, phos-S6, U3 small nucleolar ribonucleoprotein protein, carbonic anhydrase IX, and microvascular density (814). However, no biomarker has yet had an established clinical role independent of stage (15). Differential protein expression between primary RCC and normal tissues was previously studied (1618). Also, differential expression between primary and metastatic kidney disease has been investigated at the microRNA level (19, 20). Molecular analyses hold the promise of providing a better understanding of the pathogenesis of kidney cancer (21).In this study, we aimed to elucidate the pathogenesis of RCC metastasis through proteomic analysis and to identify potential prognostic markers for kidney cancer. We performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS to identify proteins that were dysregulated in metastatic RCC relative to primary RCC. Differential expressions of selected biologically interesting proteins—profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1)—were validated on two independent sets of tumors by means of western blot (WB) analysis and immunohistochemistry (IHC). Hierarchical clustering analysis showed that differential protein expression can distinguish between aggressive and non-aggressive tumors. In order to explore the role of these dysregulated proteins in tumor progression, we performed Gene Ontology (GO) and pathway analyses. In addition, we carried out a preliminary analysis to assess the potential of Pfn1, 14–3-3ζ, and Gal-1 as prognostic markers in RCC.  相似文献   
14.
15.
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications.  相似文献   
16.
17.
Brucellosis is regarded as one of the most common diseases among humans and livestock. In the present study, we aimed to assess the effect of this disease on the level of various cations including copper (Cu), manganese (Mn), zinc (Zn), and magnesium (Mg) as well as oxidative stress status in the serum of people suffering from brucellosis. The present case-study was carried out on 40 patients with brucellosis (case) and 20 healthy people (control). Blood specimens were taken from all the people and the level of essential trace elements and oxidative stress status were measured. The serum level of copper in the case group (165.39 ± 43.19 μg/dl) was significantly higher compared with that in the control group (122.12 ± 28.88 μg/dl). Whereas the serum level of zinc was significantly lower in the case group compared with that in the control group (76.47 ± 28.88 vs. 92.85 ± 23.16 μg/dl). The manganese and magnesium serum levels did not differ significantly between the two groups. Furthermore, total antioxidant capacity level was significantly lower in the case group (122.12 ± 28.22 μmol/ml) than that in the control group (3.08 ± 0.12 μmol/ml) and the level of serum malondialdehyde was significantly higher in the case group (7.20 ± 0.23 mmol/ml) than that in the control group (4.0 ± 0.19 mmol/ml). Brucellosis can cause alteration in the serum level of essential trace elements. Moreover, the present study indicated that brucellosis produces oxidative stress in patients.  相似文献   
18.
The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires'' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts.  相似文献   
19.
Peptidoglycan is a major cell wall constituent of gram-positive bacteria. It is a dynamic macromolecule that is actively remodeled to enable cell growth and differentiation through a tightly choreographed interplay of hydrolytic and biosynthetic enzyme activities. The filamentous bacterium Streptomyces coelicolor has a complex life cycle that likely requires considerable cell wall remodeling to enable both extension of vegetative hyphae and formation of differentiated cell types. In silico analysis of the S. coelicolor genome enabled identification of 56 candidate cell wall hydrolase genes. We found that seven of these genes shared a highly conserved 5′ untranslated region and were expressed during both vegetative growth and sporulation; four of these genes were selected for more extensive biochemical and biological characterization. The proteins encoded by these genes, termed RpfA, SwlA, SwlB, and SwlC, were confirmed to be hydrolytic enzymes, as they could efficiently cleave S. coelicolor cell walls. Phenotypic analyses revealed that these enzymes are important throughout development; deletion of each hydrolase gene resulted in a mutant strain that was heat sensitive, defective in spore formation, and either altered in vegetative growth or delayed in spore germination. Our results indicate that these enzymes play key roles at multiple stages in the growth and development of S. coelicolor, highlighting both the lack of redundancy in hydrolase activity and the importance of cell wall remodeling in the S. coelicolor life cycle.Peptidoglycan (PG) is a primary constituent of the gram-positive bacterial cell wall and, despite its rigid structure, is a remarkably dynamic macromolecule. It functions in maintaining cell shape and cytoplasmic turgor pressure and serves as the scaffolding to which cell wall-associated components, such as proteins and teichoic acids, are anchored (16). PG comprises alternating N-acetylglucosamine and N-acetylmuramic acid residues, which make up the glycan backbone, and peptide side chains that link the glycan strands together (49). PG biosynthesis is a complex process involving the concerted efforts of many enzymes, beginning with precursor synthesis in the cytoplasm and concluding with polymerization outside the cytoplasmic membrane (3, 8, 48). During bacterial growth, PG is actively remodeled to allow incorporation of new PG and to accommodate changes in cell shape. The enzymes responsible for this remodeling are collectively termed cell wall hydrolases, and they act by cleaving covalent bonds within either the glycan strands or the peptide side chains. The essential nature of PG requires that synthesis and cleavage be tightly regulated, with the activities of biosynthetic and hydrolytic enzymes coordinated in both space and time.Cell wall hydrolases are diverse enzymes that are typically grouped on the basis of substrate specificity and the resulting cleavage products. The major groups include the lysozymes and lytic transglycosylases, which hydrolyze the β-(1,4)-glycosidic linkage between N-acetylmuramic acid and N-acetylglucosamine; the endopeptidases, which cleave the peptide bonds in the amino acid side chains connecting the parallel glycan strands; the carboxypeptidases, which cleave the C-terminal amino acids of peptide chains; and the amidases, which cleave between N-acetylmuramic acid and the first residue (l-Ala) of the peptide side chain (55).In addition to remodeling the PG, cell wall hydrolases also contribute to a multitude of specialized cellular processes, from the assembly of secretion systems, flagella, and pili (55) to the resuscitation of dormant cells by a recently discovered class of hydrolases known as the resuscitation-promoting factors (Rpfs) (37). The Rpfs are secreted proteins that are structurally related to lysozymes (12, 13) and are found in a subset of the actinomycetes, including Micrococcus, Mycobacterium, Corynebacterium, and Streptomyces (44). The sole Micrococcus luteus Rpf is essential for viability (36), while in Mycobacterium tuberculosis, which encodes five Rpf proteins, the enzymes are required for virulence and resumption of active growth during emergence from a latent state (26). The sporulating actinomycete Streptomyces coelicolor is predicted to encode seven Rpf proteins, along with a plethora of other cell wall hydrolases. Surprisingly little is known about cell wall remodeling in the streptomycetes, despite the fact that significant remodeling must accompany the filamentous growth and morphological changes associated with the different stages of the Streptomyces life cycle. The S. coelicolor life cycle initiates with spore germination; this process likely depends on cell wall hydrolase activity, as spore germination in Bacillus subtilis requires the activity of at least two hydrolases (50). Following spore germination in S. coelicolor, germ tubes elongate and branch in a filamentous manner, forming a network of cells termed the vegetative mycelium. A second type of filamentous (but nonbranching) cells, the aerial hyphae, then emerge from the vegetative mycelium, and it is within these cells that chains of spores develop. Cell wall hydrolase activity and the associated cell wall remodeling are thought to be essential for vegetative hyphal branch formation, vegetative and aerial hyphal tip extension, spore chain formation, and spore dispersal. In this work, we describe the first investigation of cell wall hydrolase activity and function in Streptomyces. We identify a subset of hydrolases whose genes share a conserved 5′ untranslated region (UTR), demonstrate enzymatic activity for four of these proteins, and reveal that these enzymes function at multiple stages in the S. coelicolor life cycle.  相似文献   
20.
Macrophage migration inhibitory factor (MIF) is an immunoregulatory protein that is a potential therapeutic target for a number of inflammatory diseases. Evidence exists that an unexpected catalytic active site of MIF may have a biological function. To gain further insight into the role of the catalytic active site, a series of mutational, structural, and biological activity studies were performed. The insertion of an alanine between Pro-1 and Met-2 (PAM) abolishes a non-physiological catalytic activity, and this mutant is defective in the in vitro glucocorticoid counter-regulatory activity of MIF. The crystal structure of MIF complexed to (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an inhibitor of MIF d-dopachrome tautomerase activity, reveals that ISO-1 binds to the same position of the active site as p-hydroxyphenylpyruvic acid, a substrate of MIF. ISO-1 inhibits several MIF biological activities, further establishing a role for the catalytic active site of MIF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号