首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   10篇
  国内免费   17篇
  216篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   11篇
  2017年   2篇
  2016年   11篇
  2015年   3篇
  2014年   9篇
  2013年   8篇
  2012年   13篇
  2011年   17篇
  2010年   28篇
  2009年   8篇
  2008年   30篇
  2007年   9篇
  2006年   17篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
211.
Shi Y  Tu Z  Wang W  Li Q  Ye F  Wang J  Qiu J  Zhang L  Bu H  Li Y 《Cytokine》2006,36(1-2):35-44
The hallmark of failing renal transplants is tubular atrophy and interstitial fibrosis. The cytokine connective tissue growth factor (CTGF or CCN2) plays an important role in epithelial-mesenchymal transition (EMT) of tubular epithelial cells (TECs). A unique domain within CTGF (IRTPKISKPIKFELSG) which binds to its potential receptor integrin alpha v beta3 has been identified. This study was carried out to further characterize a synthetic hexadeca-peptide (P2) homologous to this domain and to determine its effect on CTGF-mediated solid phase cell adhesion, EMT induction and fibrogenesis in rat renal NRK-52E cells. Results showed that both P2 and recombinant CTGF bound to NRK-52E cells. Unlike CTGF, P2 had little effect on EMT induction including cytoskeleton remodeling and expression of alpha-smooth muscle actin (alpha-SMA) and E-cadherin, nor did it have effect on fibrogenic induction including alternation of extracellular matrix (ECM) proteins, collagen type I and IV at gene and protein levels. All data showed that P2 bound preferably on the surface of NRK-52E cells and inhibited the effect of CTGF on EMT induction and cell fibrogenesis, probably by occupying the binding sites of CTGF within its potential receptors. Therefore, P2 may be used as a potential anti-fibrotic agent.  相似文献   
212.
A role of PSM/SH2B1 had been shown in mitogenesis and extending to phenotypic cell transformation, however, the underlying molecular mechanism remained to be established. Here, four alternative PSM splice variants and individual functional protein domains were compared for their role in the regulation of Src activity. We found that elevated cellular levels of PSM variants resulted in phenotypic cell transformation and potentiated cell proliferation and survival in response to serum withdrawal. PSM variant activity presented a consistent signature pattern for any tested response of highest activity observed for gamma, followed by delta, alpha, and beta with decreasing activity. PSM-potentiated cell proliferation was sensitive to Src inhibitor herbimycin and PSM and Src were found in the same immune complex. PSM variants were substrates of the Src Tyr kinase and potentiated Src catalytic activity by increasing the V(max) and decreasing the K(m) for ATP with the signature pattern of variant activity. Dominant-negative PSM peptide mimetics including the SH2 or PH domains inhibited Src catalytic activity as well as Src-mediated phenotypic cell transformation. Activation of major Src substrate STAT3 was similarly potentiated by the PSM variants in a Src-dependent fashion or inhibited by PSM domain-specific peptide mimetics. Expression of a dominant-negative STAT3 mutant blocked PSM variant-mediated phenotypic cell transformation. Our results implicate an essential role of the PSM variants in the activation of the Src kinase and the resulting mitogenic response--extending to phenotypic cell transformation and involving the established Src substrate STAT3.  相似文献   
213.
214.
Zhao C  Liu H  Li J  Deng Y  Shi T 《BMC genomics》2010,11(Z2):S7

Background

Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana.

Results

Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana.

Conclusion

We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction.
  相似文献   
215.
As part of a bioprospecting program aimed at the discovery of anti-inflammatory agents from the Corydalis bungeana Turcz. (C. bungeana), five new hexahydrobenzophenanthridine alkaloids, corycaline A-E (15), along with four known alkaloids, were isolated from the whole plant of C. bungeana. Their structures including absolute configurations were elucidated on the basis of extensive spectroscopic analyses and electronic circular dichroism (ECD) calculations. The inhibitory activities of the nine compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 mouse macrophage cells were determined; all tested compounds except 2 and 7 exhibited significant inhibitory effects with IC50 values in the range of 1.00–2.79?μM.  相似文献   
216.
Protoplast fusion for crop improvement and breeding in China   总被引:1,自引:0,他引:1  
Protoplast fusion offers an opportunity for circumventing barriers to sexual reproduction and allows for gene transfer of nuclear and cytoplasmic genomes to enrich the gene pool of cultivated species. Moreover, protoplast fusion effectively generates novel germplasm for elite breeding of conventional crosses and promotes crop improvement in existing cultivars. Over the past few decades, protoplast fusion in China has considerably progressed not only for food crops but also for economic plants. In this review, we present and discuss the development of somatic hybrids in wheat, rapeseed, citrus, and cotton, some of which are already in use or have potential for future commercial use in China. For example, an elite salt- and drought-resistant line, Shangrong No. 3, has already been registered as a commercial wheat cultivar. Some other hybrids have been found to have disease resistance as well as modified fatty acids, high oil and protein contents, novel cytoplasmic male sterility, and numerous other desirable agronomic characteristics that are useful for further breeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号