首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47423篇
  免费   3360篇
  国内免费   19篇
  50802篇
  2024年   52篇
  2023年   175篇
  2022年   565篇
  2021年   913篇
  2020年   568篇
  2019年   682篇
  2018年   1027篇
  2017年   907篇
  2016年   1477篇
  2015年   2321篇
  2014年   2668篇
  2013年   2981篇
  2012年   3943篇
  2011年   3781篇
  2010年   2392篇
  2009年   2189篇
  2008年   3029篇
  2007年   2910篇
  2006年   2543篇
  2005年   2358篇
  2004年   2161篇
  2003年   1865篇
  2002年   1614篇
  2001年   1302篇
  2000年   1229篇
  1999年   992篇
  1998年   395篇
  1997年   338篇
  1996年   245篇
  1995年   209篇
  1994年   208篇
  1993年   172篇
  1992年   326篇
  1991年   295篇
  1990年   266篇
  1989年   226篇
  1988年   173篇
  1987年   163篇
  1986年   131篇
  1985年   105篇
  1984年   78篇
  1983年   84篇
  1982年   63篇
  1981年   53篇
  1980年   54篇
  1979年   69篇
  1978年   51篇
  1977年   50篇
  1976年   43篇
  1974年   63篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
There are approximately 20 known species of the genus Cryptosporidium, and among these, 8 infect immunocompetent or immunocompromised humans. C. hominis and C. parvum most commonly infect humans. Differentiating between them is important for evaluating potential sources of infection. We report here the development of a simple and accurate real-time PCR-based restriction fragment length polymorphism (RFLP) method to distinguish between C. parvum and C. hominis. Using the CP2 gene as the target, we found that both Cryptosporidium species yielded 224 bp products. In the subsequent RFLP method using TaqI, 2 bands (99 and 125 bp) specific to C. hominis were detected. Using this method, we detected C. hominis infection in 1 of 21 patients with diarrhea, suggesting that this method could facilitate the detection of C. hominis infections.  相似文献   
992.
Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.  相似文献   
993.

Aims

Anethole, the major component of the essential oil of star anise, has been reported to have antioxidant, antibacterial, antifungal, anti-inflammatory, and anesthetic properties. In this study, we investigated the anti-inflammatory effects of anethole in a mouse model of acute lung injury induced by lipopolysaccharide (LPS).

Main methods

BALB/C mice were intraperitoneally administered anethole (62.5, 125, 250, or 500 mg/kg) 1 h before intratracheal treatment with LPS (1.5 mg/kg) and sacrificed after 4 h. The anti-inflammatory effects of anethole were assessed by measuring total protein and cell levels and inflammatory mediator production and by histological evaluation and Western blot analysis.

Key findings

LPS significantly increased total protein levels; numbers of total cells, including macrophages and neutrophils; and the production of inflammatory mediators such as matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in bronchoalveolar lavage fluid. Anethole (250 mg/kg) decreased total protein concentrations; numbers of inflammatory cells, including neutrophils and macrophages; and the inflammatory mediators MMP-9, TNF-α and NO. In addition, pretreatment with anethole decreased LPS-induced histopathological changes. The anti-inflammatory mechanism of anethole in LPS-induced acute lung injury was assessed by investigating the effects of anethole on NF-κB activation. Anethole suppressed the activation of NF-κB by blocking IκB-α degradation.

Significance

These results, showing that anethole prevents LPS-induced acute lung inflammation in mice, suggest that anethole may be therapeutically effective in inflammatory conditions in humans.  相似文献   
994.
Osteogenesis requires close co-operation with angiogenesis to create vascularized bone tissue. In this study, an indirect co-culture model using osteoblasts (OBs), primary endothelial cells (ECs) and Matrigel interlayer was established to understand the impact of each cell type on the other. ECs synergistically enhanced osteoblastic gene expression by OBs, while OBs were capable of supporting tubule-like structures formed by ECs on Matrigel, enhancing mean tubule length from 146.5 ± 23.5 μm in ECs alone to 192 ± 28.6 μm in co-culture (p < 0.05). Similar improvements were noted in terms of tubule number. An applicability study of the co-culture model to bone tissue engineering, performed on a biopolymer fibrous membrane, showed substantially enhanced deposition of calcified nodules. These results demonstrate the efficacy of co-culture with ECs to improve osteogenesis for bone tissue engineering.  相似文献   
995.
In order to characterize the significance of sulfur (S) nutrition in protein expression under iron (Fe)-deficient conditions, gel-based proteomic analysis was performed with the leaves of Brassica napus exposed to S and Fe combined treatments: sufficient in S and Fe (+S/+Fe, control), sufficient S but Fe deprived (+S/?Fe), deprived S but sufficient Fe (?S/+Fe), and deprived S and Fe (?S/?Fe). The resulting data showed that 15 proteins were down-regulated due to production of oxidative damage as indicated by H2O2 and O 2 ?1 localizations and due to leaf chlorosis in leaves in S-deprived leaves either in presence (?S/+Fe) or absence of Fe (?S/?Fe), whereas these down-regulated proteins were well expressed in the presence of S (+S/?Fe) compared to control (+S/+Fe). In addition, two proteins were up-regulated under S-deprived condition in presence (?S/+Fe) and absence of (?S/?Fe) Fe. The functional classification of these identified proteins was estimated that 40 % of the proteins belong to chloroplast precursor, and rest of the proteins belongs to hypothetical proteins, RNA binding, secondary metabolism and unknown proteins. On the other hand, five protein spots from S deprived (?S/+Fe) and ten spots from Fe deprived (?S/?Fe) conditions were absent, whereas they were well expressed in presence of S (+S/?Fe) compared to control plants (+S/+Fe). These results suggest that sulfur nutrition plays an important role in alleviating protein damage in Fe-deficient plants and adaptation to Fe-deficiency in oilseed rape.  相似文献   
996.
Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96 % enantiomeric excess and 44 % of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.  相似文献   
997.
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.  相似文献   
998.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   
999.
1000.
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces oxidative stress and, in clinical studies, is associated with increased body mass index (BMI) and the metabolic syndrome. This study was designed to examine the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases in humans) in MSCs decreased during adipocyte differentiation; however, exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis in a dose-dependent manner in these cells (P < 0.05). The inability of a 20-HETE analog to reproduce these effects suggested the involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2 selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by 20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of 20-HETE and 20-OH-PGE2 resulted in the increased expression of the adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes. Taken together we show for the first time that 20-HETE-derived COX-2-dependent 20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC undergoing adipogenic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号