首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   8篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   9篇
  2013年   11篇
  2012年   21篇
  2011年   9篇
  2010年   6篇
  2009年   13篇
  2008年   13篇
  2007年   11篇
  2006年   10篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1994年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
61.

Background

The potato is one of the most common types of genetically modified (GM) food. However, there are no published data evaluating the impact of genetic manipulations on the allergenicity of GM potatoes. To compare the allergenicity of GM potatoes with that of wild-type potatoes using in vivo and in vitro methods in adult allergy patients sensitized to potatoes.

Methods

A total of 1886 patients with various allergic diseases and 38 healthy controls participated in the study. Skin-prick testing and IgE-ELISA were carried out with extracts prepared from wild-type and GM potatoes. An ELISA inhibition test was used to confirm the binding specificity. IgE-binding components in extracts from the two types of potato were identified by SDS-PAGE and IgE-immunoblotting. The effects of digestive enzymes and heat on the allergenicity of the extracts was evaluated by preincubating the potatoes with or without simulated gastric and intestinal fluids in the absence or presence of heat.

Results

Positive responses (ratio of the wheal size induced by the allergen to that induced by histamine (A/H) ≥ 2+) to wild-type or GM potato extracts, as demonstrated by the skin-prick test, were observed in 108 patients (5.7%). Serum-specific IgE was detected in 0–88% of subjects who tested positively. ELISA inhibition tests indicated significant inhibition when extract from each type of potato was added. IgE-immunoblot analysis demonstrated the presence of 14 IgE-binding components within the wild-type potato and 9 within the GM potato. Furthermore, a common 45-kDa binding component that yielded similar IgE-binding patterns was noted in more than 80% of the reactions using sera from patients sensitized to wild-type or GM potato. Exposure to simulated gastric fluid and heat treatment similarly inhibited IgE binding by extracts from wild-type and GM potatoes, whereas minimal changes were obtained following exposure of the extracts to simulated intestinal fluid.

Conclusion

Our results strongly suggest that genetic manipulation of potatoes does not increase their allergenic risk. The sensitization rate of adult allergy patients to both types of extract was 5.7%, and a common major allergen (45 kDa) was identified.  相似文献   
62.
A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (1/1, 500 to 1/40, 000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3.  相似文献   
63.
α-Glucosidase is in the glycoside hydrolase family 13 (13AG) and 31 (31AG). Only 31AGs can hydrate the D-glucal double bond to form α-2-deoxyglucose. Because 1,5-anhydrofructose (AF), having a 2-OH group, mimics the oxocarbenium ion transition state, AF may be a substrate for α-glucosidases. α-Glucosidase-catalyzed hydration produced α-glucose from AF, which plateaued with time. Combined reaction with α-1,4-glucan lyase and 13AG eliminated the plateau. Aspergillus niger α-glucosidase (31AG), which is stable in organic solvent, produced ethyl α-glucoside from AF in 80% ethanol. The findings indicate that α-glucosidases catalyze trans-addition. This is the first report of α-glucosidase-associated glucose formation from AF, possibly contributing to the salvage pathway of unutilized AF.  相似文献   
64.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a key enzyme that hydrolyzes the phosphodiester bond between tyrosine of topoisomerase and 3′-phosphate of DNA and repairs topoisomerase-mediated DNA damage during chromosome metabolism. However, functional Tdp1 has only been described in yeast and human to date. In human, mutations of the Tdp1 gene are involved in the disease spinocerebellar ataxia with axonal neuropathy. In plants, we have identified the functional nuclear protein AtTDP, homolog to human Tdp1 from Arabidopsis (Arabidopsis thaliana). The recombinant AtTDP protein certainly hydrolyzes the 3′-phosphotyrosyl DNA substrates related to repairing in vivo topoisomerase I-DNA-induced damage. The loss-of-function AtTDP mutation displays developmental defects and dwarf phenotype in Arabidopsis. This phenotype is substantially caused by decreased cell numbers without any change of individual cell sizes. The tdp plants exhibit hypersensitivities to camptothecin, a potent topoisomerase I inhibitor, and show rigorous cell death in cotyledons and rosette leaves, suggesting the failure of DNA damage repair in tdp mutants. These results indicate that AtTDP plays a clear role in the repair of topoisomerase I-DNA complexes in Arabidopsis.In all living organisms, a variety of DNA damage is constantly caused by replication errors, UV light, ionizing radiation, DNA damage agents, etc. Once DNA damage has occurred, specific DNA repair proteins, such as AP endonuclease, RAD1 (for radiation sensitive), RAD9, RAD51, XRCC2 (for x-ray repair cross-complementing), Ku80 (XRCC6), and ligase, initiate to act through the repair pathways (Wood et al., 2001). Defects in DNA damage repair have evolved into cancer or genetic diseases in mammals and affect productivity or growth in plants (Tuteja et al., 2001; Wood et al., 2001).In the repair of DNA-protein cross-links, tyrosyl-DNA phosphodiesterase 1 (Tdp1) is known as a unique protein. Tdp1 was initially reported as an active enzyme in Saccharomyces cerevisiae that specifically removes the Tyr group from the covalent intermediate between the Tyr residue and the terminal 3′- phosphate of the oligonucleotide (Yang et al., 1996). Subsequently, the yeast TDP1 gene was identified and showed highly conserved sequences with other organisms, such as Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and Homo sapiens (Pouliot et al., 1999). The Tdp1 homologs of these species are members of the phospholipase D (PLD) superfamily (Pouliot et al., 1999; Interthal et al., 2001). Yeast Tdp1 is mainly studied concerning the topoisomerase I-repair pathway using double or triple mutants. The deletion mutations of yeast Tdp1 were shown lacking in the repair of DNA damage induced by a topoisomerase inhibitor, the anticancer drug camptothecin (CPT; Pouliot et al., 2001; Liu et al., 2002; Vance and Wilson, 2002). Tdp1 has been further implicated in multiple repair pathways, including the damage repair of topoisomerase II-DNA in yeast (Nitiss et al., 2006).In multicellular eukaryotes, the defect of human Tdp1 has resulted in the neurodisorder disease spinocerebellar ataxia with axonal neuropathy (SCAN1; Takashima et al., 2002). SCAN1 is a rare autosomal recessive neurodegenerative disease, and the patients present distal muscle weakness and peripheral neuropathy (Interthal et al., 2001; Takashima et al., 2002). SCAN1 is caused by a missense mutation (His-493Arg) in the Tdp1 catalytic site. As in yeast, the human Tdp1 protein plays a role in the repair of topoisomerase I-DNA complex lesions in SCAN1 cells (El-Khamisy et al., 2005; Miao et al., 2006). SCAN1 cells are hypersensitive to CPT (Interthal et al., 2005; Miao et al., 2006) and accumulate single-strand break and double-strand break DNAs by CPT (El-Khamisy et al., 2005).At present, although the functional analysis of Tdp1 has been widely conducted in yeast and human cell lines, its role in the overall growth and development of higher plants remains unknown. Here, we investigate the function of a novel Arabidopsis (Arabidopsis thaliana) TDP, a human and yeast Tdp1 homolog. The AtTDP protein shows the DNA damage-repairing activity and substrate specificities in biochemical assay. The dwarf phenotype of the Arabidopsis tdp mutant may be due to the reduced cell number caused by the accumulation of DNA damage and progressive cell death during Arabidopsis development.  相似文献   
65.
Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased kcat/Km values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the kcat/Km values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest kcat/Km value for maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at + 2 and + 3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.  相似文献   
66.
Clinical trials evaluating the rate of short-term selective serotonin-reuptake inhibitor (SSRI)-induced hyperprolactinemia have produced conflicting results. Thus, the aim of this study was to clarify whether SSRI therapy can induce hyperprolactinemia and macroprolactinemia. Fifty-five patients with major depressive disorder (MDD) were enrolled in this study. Serum prolactin and macroprolactin levels were measured at a single time point (i.e., in a cross-sectional design). All patients had received SSRI monotherapy (escitalopram, paroxetine, or sertraline) for a mean of 14.75 months. Their mean prolactin level was 15.26 ng/ml. The prevalence of patients with hyperprolactinemia was 10.9% for 6/55, while that of patients with macroprolactinemia was 3.6% for 2/55. The mean prolactin levels were 51.36 and 10.84 ng/ml among those with hyperprolactinemia and a normal prolactin level, respectively. The prolactin level and prevalence of hyperprolactinemia did not differ significantly within each SSRI group. Correlation analysis revealed that there was no correlation between the dosage of each SSRI and prolactin level. These findings suggest that SSRI therapy can induce hyperprolactinemia in patients with MDD. Clinicians should measure and monitor serum prolactin levels, even when both SSRIs and antipsychotics are administered.  相似文献   
67.
PRL-3, phosphatase of regenerating liver-3, plays a role in cancer progression through its involvement in invasion, migration, metastasis, and angiogenesis. We synthesized rhodanine derivatives, CG-707 and BR-1, which inhibited PRL-3 enzymatic activity with IC50 values of 0.8 μM and 1.1 μM, respectively. CG-707 and BR-1 strongly inhibited the migration and invasion of PRL-3 overexpressing colon cancer cells without exhibiting cytotoxicity. The specificity of the inhibitors on PRL-3 phosphatase activity was confirmed by the phosphorylation recovery of known PRL-3 substrates such as ezrin and cytokeratin 8. The compounds selectively inhibited PRL-3 in comparison with other phosphatases, and CG-707 regulated epithelial-to-mesenchymal transition (EMT) marker proteins. The results of the present study reveal that rhodanine is a specific PRL-3 inhibitor and a good lead molecule for obtaining a selective PRL-3 inhibitor.  相似文献   
68.
Choi BK  Kim YH  Choi JH  Kim CH  Kim KS  Sung YC  Lee YM  Moffett JR  Kwon BS 《Cytokine》2011,55(3):420-428
4-1BB (CD137) is a powerful T-cell costimulatory molecule in the treatment of virus infections and tumors, but recent studies have also uncovered regulatory functions of 4-1BB signaling. Since 4-1BB triggering suppresses autoimmunity by accumulating indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) in an interferon (IFN)-γ-dependent manner, we asked whether similar molecular and cellular changes were induced by 4-1BB triggering in virus-infected mice. 4-1BB triggering increased IFN-γ and IDO, and suppressed CD4(+) T cells, in C57BL/6 mice infected with the type 1 KOS strain of Herpes simplex virus (HSV-1), as it does in an autoimmune disease model. Detailed analysis of the CD4(+) T suppression showed that freshly activated CD62L(high) T cells underwent apoptosis in the early phase of suppression, and CD62L(low) effector/memory T cells in the later phase. Although 4-1BB triggering resulted in similar cellular changes - increased CD8(+) T and decreased CD4(+) T cells, it had different effects on mortality in mice infected with HSV-1 RE, influenza, and Japanese encephalitis virus (JEV); it increased mortality in influenza-infected mice but decreased it in JEV-infected mice. Since the dominant type of immune cell generated to protect the host was different for each virus - CD4(+) T cells and neutrophils in HSV-1 RE infection, both CD4(+) T and CD8(+) T cells in influenza infection, and a crucial role for B cells in JEV infection, 4-1BB triggering resulted in different therapeutic outcomes. We conclude that the therapeutic outcome of 4-1BB triggering is determined by whether the protective immunity generated against the virus was beneficially altered by the 4-1BB triggering.  相似文献   
69.
Dextranase is an enzyme that hydrolyzes dextran α-1,6 linkages. Streptococcus mutans dextranase belongs to glycoside hydrolase family 66, producing isomaltooligosaccharides of various sizes and consisting of at least five amino acid sequence regions. The crystal structure of the conserved fragment from Gln100 to Ile732 of S. mutans dextranase, devoid of its N- and C-terminal variable regions, was determined at 1.6 Å resolution and found to contain three structural domains. Domain N possessed an immunoglobulin-like β-sandwich fold; domain A contained the enzyme''s catalytic module, comprising a (β/α)8-barrel; and domain C formed a β-sandwich structure containing two Greek key motifs. Two ligand complex structures were also determined, and, in the enzyme-isomaltotriose complex structure, the bound isomaltooligosaccharide with four glucose moieties was observed in the catalytic glycone cleft and considered to be the transglycosylation product of the enzyme, indicating the presence of four subsites, −4 to −1, in the catalytic cleft. The complexed structure with 4′,5′-epoxypentyl-α-d-glucopyranoside, a suicide substrate of the enzyme, revealed that the epoxide ring reacted to form a covalent bond with the Asp385 side chain. These structures collectively indicated that Asp385 was the catalytic nucleophile and that Glu453 was the acid/base of the double displacement mechanism, in which the enzyme showed a retaining catalytic character. This is the first structural report for the enzyme belonging to glycoside hydrolase family 66, elucidating the enzyme''s catalytic machinery.  相似文献   
70.
The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Recombinant 3CL(pro) was expressed in Pichia pastoris GS115 as a 42?kDa protein that displayed a K ( m ) of 15?±?2?μM with Dabcyl-KTSAVLQSGFRKME-Edans as substrate. Purified 3CL(pro) was used for inhibition and kinetic assays with seven flavonoid compounds. The IC(50) of six flavonoid compounds were 47-381?μM. Quercetin, epigallocatechin gallate and gallocatechin gallate (GCG) displayed good inhibition toward 3CL(pro) with IC(50) values of 73, 73 and 47?μM, respectively. GCG showed a competitive inhibition pattern with K ( i ) value of 25?±?1.7?μM. In molecular docking experiments, GCG displayed a binding energy of -14?kcal?mol(-1) to the active site of 3CL(pro) and the galloyl moiety at 3-OH position was required for 3CL(pro) inhibition activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号