全文获取类型
收费全文 | 592篇 |
免费 | 40篇 |
国内免费 | 2篇 |
专业分类
634篇 |
出版年
2024年 | 2篇 |
2022年 | 13篇 |
2021年 | 10篇 |
2020年 | 16篇 |
2019年 | 9篇 |
2018年 | 15篇 |
2017年 | 13篇 |
2016年 | 21篇 |
2015年 | 34篇 |
2014年 | 41篇 |
2013年 | 49篇 |
2012年 | 47篇 |
2011年 | 48篇 |
2010年 | 34篇 |
2009年 | 17篇 |
2008年 | 40篇 |
2007年 | 25篇 |
2006年 | 26篇 |
2005年 | 28篇 |
2004年 | 18篇 |
2003年 | 20篇 |
2002年 | 13篇 |
2001年 | 9篇 |
2000年 | 6篇 |
1999年 | 9篇 |
1998年 | 2篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 5篇 |
1992年 | 7篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1988年 | 6篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1981年 | 3篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有634条查询结果,搜索用时 15 毫秒
11.
Ji-Hyeon Park Ji Hae Seo Hee-Jun Wee Tam Thuy Lu Vo Eun Ji Lee Hoon Choi Jong-Ho Cha Bum Ju Ahn Min Wook Shin Sung-Jin Bae Kyu-Won Kim 《PloS one》2014,9(8)
Arrest defective 1 (ARD1) is an acetyltransferase that is highly conserved across organisms, from yeasts to humans. The high homology and widespread expression of ARD1 across multiple species and tissues signify that it serves a fundamental role in cells. Human ARD1 (hARD1) has been suggested to be involved in diverse biological processes, and its role in cell proliferation and cancer development has been recently drawing attention. However, the subcellular localization of ARD1 and its relevance to cellular function remain largely unknown. Here, we have demonstrated that hARD1 is imported to the nuclei of proliferating cells, especially during S phase. Nuclear localization signal (NLS)-deleted hARD1 (hARD1ΔN), which can no longer access the nucleus, resulted in cell morphology changes and cellular growth impairment. Notably, hARD1ΔN-expressing cells showed alterations in the cell cycle and the expression levels of cell cycle regulators compared to hARD1 wild-type cells. Furthermore, these effects were rescued when the nuclear import of hARD1 was restored by exogenous NLS. Our results show that hARD1 nuclear translocation mediated by NLS is required for cell cycle progression, thereby contributing to proper cell proliferation. 相似文献
12.
Glen R. Hood Thomas H. Q. Powell Meredith M. Doellman Sheina B. Sim Mary Glover Wee L. Yee Robert B. Goughnour Monte Mattsson Dietmar Schwarz Jeffrey L. Feder 《Evolution; international journal of organic evolution》2020,74(1):156-168
Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this “natural experiment” to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises. 相似文献
13.
Gajanan T Behere Wee Tek Tay Derek A Russell David G Heckel Belinda R Appleton Keshav R Kranthi Philip Batterham 《BMC evolutionary biology》2007,7(1):117
Background
Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single species status of H. armigera has been doubted, due to its wide distribution and plant host range across the Old World. This study explores the global genetic diversity of H. armigera and its evolutionary relationship to H zea. 相似文献14.
Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties 总被引:4,自引:0,他引:4
The development of blended collagen and glycosaminoglycan (GAG) scaffolds can potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native extracellular matrix (ECM). In this study, we were able to obtain novel nanofibrous collagen-GAG scaffolds by electrospinning collagen blended with chondroitin sulfate (CS), a widely used GAG, in a mixed solvent of trifluoroethanol and water. The electrospun collagen-GAG scaffold with 4% CS (COLL-CS-04) exhibited a uniform fiber structure with nanoscale diameters. A second collagen-GAG scaffold with 10% CS consisted of smaller diameter fibers but exhibited a broader diameter distribution due to the different solution properties in comparison with COLL-CS-04. After cross-linking with glutaraldehyde vapor, the collagen-GAG scaffolds became more biostable and were resistant to collagenase degradation. This is evidently a more favorable environment allowing increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without cross-linking did not increase the biostability but still promoted cell growth. The potential of applying the nanoscale collagen-GAG scaffold in tissue engineering is significant since the nanodimension fibers made of natural ECM mimic closely the native ECM found in the human body. The high surface area characteristic of this scaffold may maximize cell-ECM interaction and promote tissue regeneration faster than other conventional scaffolds. 相似文献
15.
In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts 总被引:22,自引:0,他引:22
A B Cosimi D Conti F L Delmonico F I Preffer S L Wee R Rothlein R Faanes R B Colvin 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(12):4604-4612
These studies test whether allograft rejection can be blocked by interference with leukocyte adhesion, using a murine IgG2a mAb (R6.5) reactive with monkey ICAM-1 (CD54). In 16 Cynomolgus renal allograft recipients, R6.5 was administered prophylactically as the sole immunosuppressive agent for 12 days (0.01 to 2 mg/kg/day). Survival in 14 recipients with technically successful grafts was significantly prolonged (24.2 +/- 2.4 vs 9.2 +/- 0.6 days for controls; p less than 0.001). Intercellular adhesion molecule-1 (CD54) (ICAM-1) was expressed on vascular endothelium in the kidney and other organs in the monkey in a pattern similar to that in humans. During cellular rejection in controls, ICAM-1 expression increased on endothelial cells, infiltrating mononuclear leukocytes and tubular cells. Biopsies during R6.5 administration showed decreased T cell infiltration (CD2, CD8, CD4) compared with controls and decreased arterial endothelial inflammation. No changes occurred in circulating T cells, aside from variable coating with mIgG. In six of eight other recipients R6.5 administration (0.5 to 2 mg/kg/day for 10 days) reversed preexisting rejection that resulted from taper of Cyclosporine to subtherapeutic levels. Responding grafts showed decreased edema and hemorrhage but no consistent change in the infiltrate. At 1 h after the first dose, mouse IgG deposited primarily on the graft vascular endothelium without any change in the inflammatory infiltrate. Mouse IgG also deposited on the endothelium of normal organs without eliciting an inflammatory response and was cleared from the endothelium within 4 days. Inasmuch as the principal site of binding was the vascular endothelium, we hypothesize that the antibody blocks adhesion to graft ICAM-1 molecules on the vessels. Anti-ICAM-1 also binds to recipient cells and may interfere with Ag presentation and/or T cell interactions. Whatever the mechanism(s), these studies indicate that an anti-ICAM-1 antibody inhibits T cell mediated injury in vivo, and that ICAM-1 is a critical molecule in the pathogenesis of allograft rejection. 相似文献
16.
Young-Jung Lee Dong-Young Choi Yeo-Pyo Yun Sang Bae Han Ki-Wan Oh Jin Tae Hong 《The Journal of nutritional biochemistry》2013,24(1):298-310
Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD) through amyloidogenesis. In a previous study, we found that systemic inflammation by intraperitoneal (ip) injection of lipopolysaccharide (LPS) induces neuroinflammation and triggers memory impairment. In this present study, we investigated the inhibitory effects of epigallocatechin-3-gallate (EGCG) on the systemic inflammation-induced neuroinflammation and amyloidogenesis as well as memory impairment. ICR mice were orally administered with EGCG (1.5 and 3 mg/kg) for 3 weeks, and then the mice were treated by ip injection of LPS (250 μg/kg) for 7 days. We found that treatment of LPS induced memory-deficiency-like behavior and that EGCG treatment prevented LPS-induced memory impairment and apoptotic neuronal cell death. EGCG also suppressed LPS-induced increase of the amyloid beta-peptide level and the expression of the amyloid precursor protein (APP), β-site APP cleaving enzyme 1 and its product C99. In addition, we found that EGCG prevented LPS-induced activation of astrocytes and elevation of cytokines including tumor necrosis factor-α, interleukin (IL)-1β, macrophage colony-stimulating factor, soluble intercellular adhesion molecule-1 and IL-16, and the increase of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase-2, which are known factors responsible for not only activation of astrocytes but also amyloidogenesis. In the cultured astrocytes, EGCG also inhibited LPS-induced cytokine release and amyloidogenesis. Thus, this study shows that EGCG prevents memory impairment as well as amyloidogenesis via inhibition of neuroinflammatory-related cytokines released from astrocytes and suggests that EGCG might be a useful intervention for neuroinflammation-associated AD. 相似文献
17.
Zhang S Koh TH Seah WK Lai YH Elgar MA Li D 《Proceedings. Biological sciences / The Royal Society》2012,279(1734):1824-1830
Spider webs are made of silk, the properties of which ensure remarkable efficiency at capturing prey. However, remaining on, or near, the web exposes the resident spiders to many potential predators, such as ants. Surprisingly, ants are rarely reported foraging on the webs of orb-weaving spiders, despite the formidable capacity of ants to subdue prey and repel enemies, the diversity and abundance of orb-web spiders, and the nutritional value of the web and resident spider. We explain this paradox by reporting a novel property of the silk produced by the orb-web spider Nephila antipodiana (Walckenaer). These spiders deposit on the silk a pyrrolidine alkaloid (2-pyrrolidinone) that provides protection from ant invasion. Furthermore, the ontogenetic change in the production of 2-pyrrolidinone suggests that this compound represents an adaptive response to the threat of natural enemies, rather than a simple by-product of silk synthesis: while 2-pyrrolidinone occurs on the silk threads produced by adult and large juvenile spiders, it is absent on threads produced by small juvenile spiders, whose threads are sufficiently thin to be inaccessible to ants. 相似文献
18.
Break-induced loss of heterozygosity in fission yeast: dual roles for homologous recombination in promoting translocations and preventing de novo telomere addition 下载免费PDF全文
Cullen JK Hussey SP Walker C Prudden J Wee BY Davé A Findlay JS Savory AP Humphrey TC 《Molecular and cellular biology》2007,27(21):7745-7757
Loss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss approximately 25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe. Extensive break-induced LOH was infrequent, resulting from large translocations through both allelic crossovers and break-induced replication. These events required the homologous recombination (HR) genes rad32(+), rad50(+), nbs1(+), rhp51(+), rad22(+), rhp55(+), rhp54(+), and mus81(+). Surprisingly, LOH was still observed in HR mutants, which resulted predominantly from de novo telomere addition at the break site. De novo telomere addition was most frequently observed in rad22Delta and rhp55Delta backgrounds, which disrupt HR following end resection. Further, levels of de novo telomere addition, while increased in ku70Delta rhp55Delta strains, were reduced in exo1Delta rhp55Delta and an rhp55Delta strain overexpressing rhp51. These findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ends. Together, these results suggest that the mechanisms of break-induced LOH may be predicted from the functional status of the HR machinery. 相似文献
19.
Iron-dependent production of a heat-modifiable, 23,000-Mr outer membrane protein in Paracoccus denitrificans. 下载免费PDF全文
Production of a 23,000-Mr major outer membrane protein of Paracoccus denitrificans ATCC 13543 was dependent upon the addition of iron to a succinate-salts medium. The 23,000-Mr protein was not produced in an iron-deficient medium, but production of five outer membrane proteins in the 85,000- to 72,000-Mr range and of catechol were induced. The 23,000-Mr protein was not produced in a complex medium even when ferric citrate was added to the medium. Production of the protein was influenced by the carbon source and was decreased by peptone. 相似文献
20.
Protein kinase C (PKC) is a family of serine/threonine protein kinases that are pivotal in cellular regulation. Since its discovery in 1977, PKCs have been known as cytosolic and peripheral membrane proteins. However, there are reports that PKC can insert into phospholipids vesicles in vitro. Given the intimate relationship between the plasma membrane and the activation of PKC, it is important to determine whether such "membrane-inserted" form of PKC exists in mammalian cells or tissues. Here, we report the identification of an integral plasma membrane pool for all the 10 PKC isozymes in vivo by their ability to partition into the detergent-rich phase in Triton X-114 phase partitioning, and by their resistance to extractions with 0.2 M sodium carbonate (pH 11.5), 2 M urea and 2 M sodium chloride. The endogenous integral membrane pool of PKC in mouse fibroblasts is found to be acutely regulated by phorbol ester or diacylglycerol, suggesting that this pool of PKC may participate in cellular processes known to be regulated by PKC. At least for PKC(alpha), the C2-V3 region at the regulatory domain of the kinase is responsible for membrane integration. Further exploration of the function of this novel integral plasma membrane pool of PKC will not only shed new light on molecular mechanisms underlying its cellular functions but also provide new strategies for pharmaceutical modulation of this important group of kinases. 相似文献