首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17834篇
  免费   1738篇
  国内免费   3篇
  2022年   139篇
  2021年   292篇
  2020年   197篇
  2019年   258篇
  2018年   387篇
  2017年   302篇
  2016年   543篇
  2015年   817篇
  2014年   917篇
  2013年   1078篇
  2012年   1314篇
  2011年   1230篇
  2010年   862篇
  2009年   701篇
  2008年   988篇
  2007年   911篇
  2006年   862篇
  2005年   748篇
  2004年   792篇
  2003年   641篇
  2002年   603篇
  2001年   328篇
  2000年   295篇
  1999年   255篇
  1998年   164篇
  1997年   151篇
  1996年   118篇
  1995年   113篇
  1994年   127篇
  1993年   118篇
  1992年   185篇
  1991年   196篇
  1990年   181篇
  1989年   190篇
  1988年   169篇
  1987年   156篇
  1986年   154篇
  1985年   142篇
  1984年   121篇
  1983年   99篇
  1982年   96篇
  1981年   102篇
  1980年   90篇
  1979年   110篇
  1978年   106篇
  1976年   86篇
  1975年   97篇
  1974年   94篇
  1973年   86篇
  1972年   69篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
993.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   
994.
The terminal step of ATP synthesis in intact mitochondria is catalyzed by the ATP synthase (F(0)F(1)) that works in close synchrony with the P(i) and ADP/ATP carriers. Each carrier consists of only a single polypeptide chain in dimeric form, while the ATP synthase is highly complex consisting in animals of 17 known subunit types and more than 30 total subunits. Although structures at high resolution have been obtained for the water-soluble F(1) part of the ATP synthase consisting of only five subunit types, such structures have not been obtained for either the complete ATP synthase or the P(i) and ADP/ATP carriers. Here, we report that all three proteins are localized in highly purified cristae-like vesicles obtained by extensive subfractionation of the mitochondrial inner membrane. Moreover, using a multiwell detergent screening assay, 4 nonionic detergents out of 80 tested were found to disperse these cristae-like vesicles into single soluble complexes or "ATP synthasomes" that contain the ATP synthase in association with the P(i) and ADP/ATP carriers. These studies offer new mechanistic insights into the terminal steps of oxidative phosphorylation in mitochondria and set the stage for future structural efforts designed to visualize in atomic detail the entire complex involved. They also provide evidence that the cristae are a subcompartment of the inner membrane.  相似文献   
995.
The protein kinase D (PKD) family consists of three serine/threonine kinases: PKC micro/PKD, PKD2, and PKCnu/PKD3. Whereas PKD has been the focus of most studies, virtually nothing is known about the effect of G protein-coupled receptor agonists (GPCR) on the regulatory properties and intracellular distribution of PKD3. Consequently, we examined the mechanism that mediates its activation and intracellular distribution. GPCR agonists induced a rapid activation of PKD3 by a protein kinase C (PKC)-dependent pathway that leads to the phosphorylation of the activation loop of PKD3. Comparison of the steady-state distribution of endogenous or tagged PKD3 versus PKD and PKD2 in unstimulated cells indicated that whereas PKD and PKD2 are predominantly cytoplasmic, PKD3 is present both in the nucleus and cytoplasm. This distribution of PKD3 results from its continuous shuttling between both compartments by a mechanism that requires a nuclear import receptor and a competent CRM1-nuclear export pathway. Cell stimulation with the GPCR agonist neurotensin induced a rapid and reversible plasma membrane translocation of PKD3 that is PKC-dependent. Interestingly, the nuclear accumulation of PKD3 can be dramatically enhanced in response to its activation. Thus, this study demonstrates that the intracellular distribution of PKD isoenzymes are distinct, and suggests that their signaling properties are regulated by differential localization.  相似文献   
996.
Ceruloplasmin (Cp) is a ferroxidase that converts highly toxic ferrous iron to its non-toxic ferric form. A glycosylphosphatidylinositol (GPI)-anchored form of this enzyme is expressed by astrocytes in the mammalian central nervous system, whereas the secreted form is expressed by the liver and found in serum. Lack of this enzyme results in iron accumulation in the brain and neurodegeneration. Herein, we show using astrocytes purified from the central nervous system of Cp-null mice that GPI-Cp is essential for iron efflux and not involved in regulating iron influx. We also show that GPI-Cp colocalizes on the astrocyte cell surface with the divalent metal transporter IREG1 and is physically associated with IREG1. In addition, IREG1 alone is unable to efflux iron from astrocytes in the absence of GPI-Cp or secreted Cp. We also provide evidence that the divalent metal influx transporter DMT1 is expressed by astrocytes and is likely to mediate iron influx into these glial cells. The coordinated actions of GPI-Cp and IREG1 may be required for iron efflux from neural cells, and disruption of this balance could lead to iron accumulation in the central nervous system and neurodegeneration.  相似文献   
997.
998.
Neurofilaments are essential for acquisition of normal axonal calibers. Several lines of evidence have suggested that neurofilament-dependent structuring of axoplasm arises through an "outside-in" signaling cascade originating from myelinating cells. Implicated as targets in this cascade are the highly phosphorylated KSP domains of neurofilament subunits NF-H and NF-M. These are nearly stoichiometrically phosphorylated in myelinated internodes where radial axonal growth takes place, but not in the smaller, unmyelinated nodes. Gene replacement has now been used to produce mice expressing normal levels of the three neurofilament subunits, but which are deleted in the known phosphorylation sites within either NF-M or within both NF-M and NF-H. This has revealed that the tail domain of NF-M, with seven KSP motifs, is an essential target for the myelination-dependent outside-in signaling cascade that determines axonal caliber and conduction velocity of motor axons.  相似文献   
999.
The mammalian nuclear lamina protein lamin B1 is posttranslationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxyl-terminal CAAX motif. In this work, we demonstrate that the CAAX endoprotease Rce1 is required for lamin B1 endoproteolysis, demonstrate an independent pool of proteolyzed but nonmethylated lamin B1, as well as fully processed lamin B1, in interphase nuclei, and show a role for methylation in the organization of lamin B1 into domains of the nuclear lamina. Deficiency in the endoproteolysis or methylation of lamin B1 results in loss of integrity and deformity of the nuclear lamina. These data show that the organization of the nuclear envelope and lamina is dependent on a mechanism involving the methylation of lamin B1, and they identify a potential mechanism of laminopathy involving a B-type lamin.  相似文献   
1000.
Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of resistance of four buffalograsses (NE91-118, 'Bonnie Brae', 'Cody', and 'Tatanka') previously identified as resistant to the western chinch bug, Blissus occiduus Barber. Antibiosis studies found no significant differences in western chinch bug fecundity, nymphal development, or survival among the resistant and susceptible buffalograsses. Tolerance studies indicated that NE91-118, Cody, and Tatanka exhibited moderate-to-high levels of tolerance based on western chinch bug damage ratings and plant height, whereas Bonnie Brae exhibited moderate-to-low levels of tolerance. Choice studies indicated the presence of antixenosis in NE91-118, whereas Cody and Tatanka showed little or no antixenosis. Scanning electron microscopy was used to disclose morphological differences between NE91-118 (resistant) and '378' (susceptible). The epicuticular wax structures and trichome densities were similar between 378 and NE91-118, suggesting that morphological structures do not contribute to NE91-118 antixenosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号