首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48412篇
  免费   17161篇
  国内免费   9篇
  2023年   97篇
  2022年   265篇
  2021年   751篇
  2020年   2398篇
  2019年   3963篇
  2018年   4240篇
  2017年   4449篇
  2016年   4687篇
  2015年   5006篇
  2014年   4785篇
  2013年   5419篇
  2012年   3525篇
  2011年   3127篇
  2010年   4075篇
  2009年   2639篇
  2008年   2027篇
  2007年   1506篇
  2006年   1430篇
  2005年   1369篇
  2004年   1366篇
  2003年   1155篇
  2002年   1086篇
  2001年   630篇
  2000年   521篇
  1999年   428篇
  1998年   208篇
  1997年   190篇
  1996年   155篇
  1995年   155篇
  1994年   161篇
  1993年   152篇
  1992年   224篇
  1991年   213篇
  1990年   203篇
  1989年   204篇
  1988年   182篇
  1987年   169篇
  1986年   170篇
  1985年   157篇
  1984年   133篇
  1983年   118篇
  1982年   115篇
  1981年   117篇
  1980年   102篇
  1979年   121篇
  1978年   123篇
  1976年   93篇
  1975年   116篇
  1974年   106篇
  1973年   99篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co‐evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short‐ and long‐term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.  相似文献   
992.
Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts—the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10‐day experiment. Specifically, four ‘best performer’ coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2, bacterial exposure, or combined stressors, whereas four ‘worst performer’ genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.  相似文献   
993.
The Southern Ocean (SO) is among the regions on Earth that are undergoing regionally the fastest environmental changes. The unique ecological features of its marine life make it particularly vulnerable to the multiple effects of climate change. A network of Marine Protected Areas (MPAs) has started to be implemented in the SO to protect marine ecosystems. However, considering future predictions of the Intergovernmental Panel on Climate Change (IPCC), the relevance of current, static, MPAs may be questioned under future scenarios. In this context, the ecoregionalization approach can prove promising in identifying well‐delimited regions of common species composition and environmental settings. These so‐called ecoregions are expected to show similar biotic responses to environmental changes and can be used to define priority areas for the designation of new MPAs and the update of their current delimitation. In the present work, a benthic ecoregionalization of the entire SO is proposed for the first time based on abiotic environmental parameters and the distribution of echinoid fauna, a diversified and common member of Antarctic benthic ecosystems. A novel two‐step approach was developed combining species distribution modeling with Random Forest and Gaussian Mixture modeling from species probabilities to define current ecoregions and predict future ecoregions under IPCC scenarios RCP 4.5 and 8.5. The ecological representativity of current and proposed MPAs of the SO is discussed with regard to the modeled benthic ecoregions. In all, 12 benthic ecoregions were determined under present conditions, they are representative of major biogeographic patterns already described. Our results show that the most dramatic changes can be expected along the Antarctic Peninsula, in East Antarctica and the sub‐Antarctic islands under both IPCC scenarios. Our results advocate for a dynamic definition of MPAs, they also argue for improving the representativity of Antarctic ecoregions in proposed MPAs and support current proposals of Conservation of Antarctic Marine Living Resources for the creation of Antarctic MPAs.  相似文献   
994.
There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.  相似文献   
995.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (?0.02) than the regional rivalry and fossil‐fuelled development scenarios (?0.06 and ?0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.  相似文献   
996.
Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co‐benefits with and trade‐offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade‐offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post‐harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co‐benefits and trade‐offs of different policy approaches can help decision‐makers choose the more effective, or at the very minimum, more benign interventions for implementation.  相似文献   
997.
Land‐use changes and the expansion of protected areas (PAs) have amplified the interaction between protected and unprotected areas worldwide. In this context, ‘interface processes' (human–nature and cross‐boundary interactions inside and around PAs) have become central to issues around the conservation of biodiversity and ecosystem services. This scientific literature review aimed to explore current knowledge and research gaps on interface processes regarding terrestrial PAs. At first, 3,515 references related to the topic were extracted through a standardized search on the Web of Science and analyzed with scientometric techniques. Next, a full‐text analysis was conducted on a sample of 240 research papers. A keyword analysis revealed a wide diversity of research topics, from ‘pure' ecology to sociopolitical research. We found a bias in the geographical distribution of research, with half the papers focusing on eight countries. Additionally, we found that the spatial extent of cross‐boundary interactions was rarely assessed, preventing any clear delimitation of PA interactive zones. In the 240 research papers we scanned, we identified 403 processes that were studied. The ecological effects of PAs were well documented and appeared to be positive overall. In contrast, the effects of PAs on local communities were understudied and, according to the literature focusing on these, were very variable according to local contexts. Our findings highlight key research advances on interface processes, especially regarding the ecological outcomes of PAs, the influence of human activities on biodiversity, and PA governance issues. In contrast, main knowledge gaps concern the spatial extent of interactive zones, as well as the interactions between local people and conservation actions and how to promote synergies between them. While the review was limited to terrestrial PAs, its findings allow us to propose research priorities for tackling environmental and socioeconomic challenges in the face of a rapidly changing world.  相似文献   
998.
Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec‐Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta‐diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed‐ and open‐crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation‐ and soil‐related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid‐ to high‐latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi‐factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high‐altitude and high‐latitude freshwater communities due to global change.  相似文献   
999.
Afforestation is considered a cost‐effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade‐offs with food security are often not considered. Here we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework. In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO2/year at 200 US$/tCO2 in 2050 leading to large‐scale application in an SSP2 scenario aiming for 2°C (410 GtCO2 cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock‐in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub‐Saharan Africa. Afforestation also requires large amounts of land (up to 1,100 Mha) leading to large reductions in agricultural land. The increased competition for land could lead to higher food prices and an increased population at risk of hunger. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade‐offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade‐offs in order to achieve mitigation sustainably.  相似文献   
1000.
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号